Терраформирование планет солнечной системы (начало). Терраформирование Важнейшие задачи учёных - терраформистов

В этот раз - Луны. С самого начала космической эпохи ученые и футурологи исследуют идею трансформирования других миров под нужды человека. Этот процесс - известный как терраформирование - требует использования методов геологической и экологической инженерии для изменения температуры или , атмосферы, топографии, экологии, чтобы сделать ее больше похожей на . И будучи ближайшим к Земле небесным телом, Луна давно считается подходящим местом.

Известно, что колонизация и/или терраформирование Луны должны проходить относительно просто, если сравнивать с другими телами. Из-за ее близости, время для транспортировки людей и оборудования на поверхность и с нее будет значительно снижено, как и расходы. Кроме того, ее близость означает, что извлекаемые ресурсы и продукты, произведенные на Луне, можно будет отвозить на Землю регулярно, да и туристическая отрасль должна развиваться.

Колонизация Луны в фантастике

Тема создания человеческих поселений на Луне всегда была одной из самых популярных тем научной фантастики. И в то время, как подавляющее большинство историй описывают лунные поселения, которые строятся на поверхности с использованием герметичных куполов или под поверхностью, есть несколько примеров, в которых сама Луна является приятной и дружелюбной для проживания средой для людей.

Самый ранний известный пример - это, пожалуй, короткий рассказ «La Journée d’un Parisien au XXIe siècle» («День парижанина 21 века»), написанный французским автором Октавой Беллар. Вышедшая в 1910 году история рассказывает, как атмосфера Луны постепенно менялась и как выращивались растения, чтобы превратить Луну в рай для исчезающих видов и человеческих колонистов.

В 1936 году американская писательница К. Мур написала «Потерянный рай», роман про контрабандиста и космического рейнджера, живущего в колонизированной . В романе Луна представлена как некогда плодородное место и описывается, как она постепенно стала безвоздушной пустыней. В 1945 году британский писатель К. Льюис написал роман, в котором Луна была домом для расы экстремальных евгеников.

Артур Кларк написал несколько романов и коротких рассказов про лунные колонии в 50-70 годы 20 века. В 1955 году он написал «Земной свет, в котором лунное население попало под перекрестный огонь, когда началась война между Землей и альянсом Венеры и Марса. В 1961 вышел роман «Лунная пыль», в котором туристический крейсер «Селена» погружался в море лунной пыли.

В 1968 году вышел знаменитый роман Кларка «Космическая Одиссея 2001 года», часть которого развивается на колонизированной Луне, где нашли загадочный монолит (магнитная аномалия Тихо). «Свидание с Рамой», выпущенный в 1973 году, также упоминает колонизированную Луну, которая стала частью объединенных планет Солнечной системы.

Роберт Хайнлайн тоже писал о людях на Луне. Среди его раннего - «Космическое семейство Стоун» (1952), про семейку Стоунов, живущую на Луне, которая хочет покинуть дом и исследовать Солнечную систему. В 1966 году он получил премию Хьюго за роман «Луна - суровая хозяйка», в котором подземная лунная колония снабжает Землю едой и минералами.

Нехватки в романах про Луну, как колонизированную, так и терраформированную, конечно, нет. Но это фантастика. Давайте посмотрим, как обстоят дела в реальности.

Наука лунных поселений

За последние несколько десятков лет предлагались многочисленные варианты строительства колонии (или колоний) на Луне. Большая их часть возникла на заре космической эпохи, планы прорабатывались как в СССР, так и в США с развитием программы «Аполлон». В последние годы стало поступать больше предложений вернуться на Луну к 2020-м и вновь пробудился интерес к созданию постоянного поселения. Тем не менее есть несколько научных предложений, которые появились еще до 20 века.

К примеру, в 1638 году епископ Джон Уилкис - английский священник, естествоиспытатель, член Лондонского королевского общества - написал «Рассуждение на тему нового мира и другой планеты», в котором предсказал появление колонии людей на Луне. Легендарный русский инженер, ракетостроитель, ученый и космонавт-теоретик Константин Эдуардович Циолковский предлагал при своей жизни (1857-1935) построить космический лифт и выдвигал предположение, что лунное поселение станет важным шагом в становлении человечеством покоряющего космоса вида.

К 1950-м и 60-м годам предложения стали расти как снежный ком - вместе с появлением программы «Аполлон» возникли и планы разместить астронавтов на Луне на постоянной основе. В 1954 году Артур Кларк предложил построить лунную базу из надувных модулей и накрыть их лунной пылью для изоляции.

Самое первое поселение по его плану потребует строительства зданий по типу иглу и надувной радиомачты, за чем последует строительство большого постоянного купола. Кларк предлагал очищать воздух фильтром на основе водорослей, ядерным реактором генерировать энергию и электромагнитными пушками запускать грузы и топливо для межпланетных судов в космосе.

В 1959 году Джон Райнхарт - директор Mining Research Laboratory в горной школе Колорадо - опубликовал предложение под названием «Базовые критерии для застройки Луны» в журнале Британского межпланетного сообщества. Его концепция «плавучей базы» включает полуцилиндры с полукуполами на обоих концах и микрометеороидный щит над базой. Основана такая идея была на том, что в те времена считалось, что на Луне океаны пыли глубиной в полтора километра в некоторых местах.

В то же время возникли планы по размещению военных баз на Луне. Среди них проект «Горизонт» - американский план построить форт на Луне к 1967 году. ВВС США также предложили проект «Люнекс» в 1961 году, который подразумевал создание подземной базы ВВС на Луне к 1968 году.

В 1962 году Джон Денике (менеджер программы перспективных программ НАСА) и Стэнли Зан (технический директор по исследованиям лунных баз в космическом отделении компании Martin) опубликовали предложение построить лунную базу. Их идея включала строительство подповерхностной базы, расположенной в Море Спокойствия, которая будет полагаться на ядерные реакторы для энергии и системы фильтрации из водорослей.

В последние годы многие космические агентства набрасывают предложения по строительству колоний на Луне. В 2006 году Япония пообещала построить базу на Луне к 2030 году. Россия сделала подобное предложение в 2007 году, с планами на базу к 2027-2032 году. В 2007 году Джим Берке из Международного космического университета во Франции предложил создать лунный «ноев ковчег», в котором человеческая цивилизация могла бы пережить катастрофическое событие.

В августе 2014 года представители НАСА встретились с лидерами отрасли, чтобы обсудить рентабельные способы построения лунной базы в полярных регионах к 2022 году. В 2015 году НАСА изложила концепцию строительства лунного поселения, которое будет полагаться на роботов-работников (известных как «Трансформеров») и гелиостаты в процессе строительства. В 2016 году Йохан-Дитрих Вернер, новый глава ЕКА, предложил построить международную деревню на Луне в качестве преемника .

Возможные методы

Когда дело доходит до терраформирования Луны, возможности и проблемы, связанные с этим, очень похожи на проблемы . Во-первых, у Луны есть атмосфера, которая настолько тонкая, что ее можно назвать лишь экзосферой. Во-вторых, летучих элементов, необходимых для жизни, очень мало (водорода, азота и углерода).

Решить эти проблемы можно путем захвата , которые содержат водяные льды и летучие вещества, и отправки их на поверхность. Кометы сублимируют, рассеивая эти газы и водяной пар, создав таким образом атмосферу. Эти удары также высвободят воду, которая содержится в лунном реголите, и она скопится на поверхности, образуя естественные водоемы.

Передача импульса от этих комет также могла бы ускорить вращение Луны так, чтобы спутник перестал быть приливно заблокирован. Луна, суточный цикл которой ускорился бы до 24 часов, существенно упростила бы колонизацию и адаптацию к жизни.

Есть также возможность паратерраформирования частей Луны, которое было бы подобно облагораживанию полярного региона Меркурия. В случае с Луной подошел бы кратер Шеклтона, в котором ученые уже нашли водяной лед. Используя солнечные зеркала и купол, можно было бы превратить этот кратер в область с микроклиматом, в которой растут растения и имеется пригодная для дыхания атмосфера.

Возможные преимущества

По сравнению с другими планетами и лунами Солнечной системы, есть ряд преимуществ в колонизации и терраформировании именно Луны. Самым очевидным является ее близость к Земле. По сравнению с , Меркурием или внешней Солнечной системой, стоимость и время транспортировки людей и материалов на Луну и обратно будет существенно ниже.

Кроме того, бомбардировка поверхности Луны кометами потребует меньшего числа комет, чем в случае с Марсом и Венерой, - порядка сотни вместо тысяч.

Наличие водного льда в лунной почве и крупных отложений в южной полярной области позволит также создать поверхностные воды (после того как будет запущен парниковый эффект). Наряду с кометами, бомбардирующими поверхность, можно было бы ввести метановые и аммиачные льды, добытые где-нибудь на и в . Наблюдать за процессом терраформирования тоже будет проще, поскольку Луна ближе и требует меньше инфраструктуры.

В то же время колонии на Луне будут обладать массой преимуществ. Местная база ресурсов обеспечит возможности для использования ресурсов на месте, а также сырья, необходимого для миссий в глубоком космосе. К примеру, поскольку состав Луны похож на земной, на ней можно добывать минералы и отправлять на Землю. Лунная почва, добытая на поверхности, могла бы использоваться для создания радиационных экранов (защиты от излучения) и поселений под куполом на поверхности.

Лунные запасы водного льда, которого особенно много в южной полярной области, могли бы послужить в качестве постоянного источника воды для колонистов. Еще на верхних слоях лунного реголита много гелия-3, который можно было бы использовать в термоядерных реакторах, обеспечивая постоянное снабжение чистой энергией как лунные колонии, так и Землю.

Лунная база могла бы выступать в качестве отправной точки для миссий в Солнечной системе. NASA подсчитало, что за счет создания лунной базы, которая могла бы использовать местную воду для создания водородного топлива, можно было бы сохранить миллиарды долларов. Такой форпост был бы неотъемлемой частью инфраструктуры, если говорить о пилотируемых миссиях на Марс и строительстве марсианского поселения.

Низкая сила притяжения на Луне и скорость убегания также означают, что миссии, запущенные с Луны, потребуют гораздо меньше ракетного топлива, чтобы достичь космоса. Такое же преимущество позволило бы построить электромагнитную пушку, лунный лифт или другие проекты, которые считаются слишком дорогими для строительства на Земле. Любая из этих структур позволит сократить затраты на перемещение материалов и спутников (вроде космических ) в разы.

И последнее, но немаловажное: создание лунного поселения также обеспечит нас ценной информацией, в частности, о долгосрочных последствиях жизни в условиях низкой гравитации. Эта информация могла бы оказаться полезной в создании постоянной базы на Марсе или других телах Солнечной системы с силой тяжести на поверхности меньше 1 G.

На Луне имеются стабильные лавовые трубы, которые достаточно велики, чтобы вместить целые города, - и это тоже плюс. Такая подземная среда может быть под давлением и вместить пригодную для дыхания атмосферу, а также обеспечит защиту от солнечной радиации.

Возможные проблемы

Терраформирование Луны таит в себе и ряд проблем. С одной стороны, сбор комет и льдов из внешней Солнечной системы потребует инфраструктуры, которой просто не существует и будет дорого создать. По сути, потребуются сотни , чтобы собрать все ресурсы, и их придется оснастить двигательными системами, которые позволят им совершать поездку в короткий промежуток времени и которых тоже пока не существует.

В то время как длительные периоды времени, проведенные в условиях микрогравитации, как известно, вызывают мышечную дегенерацию и потерю плотности костной ткани, непонятно, как эффект низкой гравитации скажется на постоянном населении и детях, рожденных в таких условиях. Возможно, придется генно-модифицировать земные растения и животных, чтобы они могли жить в лунных условиях, но неизвестно, будет ли это успешным решением.

И, конечно, стоимость всего этого будет астрономической, хотя и меньше, чем можно было бы подумать, и потребует развития в течение нескольких поколений. О преемственности поколений говорить сложно, не говоря уж о том, что обязательства, принятые одним правительством или международным органом, могут не соблюдаться следующим.

У колонии на поверхности будет много проблем. Длинные лунные ночи (длиной в 354 часа) будут означать, что зависимость от солнечной энергии будет невозможна нигде кроме полярных областей. Кроме того, значительные колебания температуры тоже потребуют внесения изменений в конструкции колоний. Любой населенный пункт на поверхности нужно будет защитить и от солнечного излучения.

Отсутствие атмосферы увеличивает шансы на попадание комет и уязвимость к солнечным вспышкам. Луна также периодически проходит через магнитосферу Земли, создавая плазменный кнут, рассекающий поверхность. На светлой стороне бомбардировка электронов приводит к выбросу ультрафиолетовых фотонов и наращиванию отрицательного заряда на темной стороне. Это тоже влечет некоторую опасность для поселений на поверхности.

Как мы уже отметили, ряд этих вопросов можно было бы решить за счет строительства поселений под поверхностью. Но если предположить, что населенные пункты будут зависеть от солнечной энергии, их придется строить вблизи полярных областей, чтобы пользоваться наличием вечного света в этих регионах. Альтернативой могли бы стать термоядерные реакторы, работающие на гелии-3. Но это, опять же, дорогостоящий вариант и пока недоступный.

Зачем? Об этом мы уже сказали. Но самым главным, пожалуй, станет присутствие человека на Луне. Это присутствие послужит ступенькой к присутствию на Марсе, Венере и в других местах Солнечной системы. Еще один шаг в нашей межпланетной - или даже межзвездной - гонке.

> Терраформирование Луны

Колонизация Луны в пригодную для жизни среду обитания. Читайте методы создания колоний на спутнике, реальные исследования и использование метеоритов и комет.

С самого начала освоения космического пространства писатели затрагивали тему колонизации чужих миров. Все это основывалось на теме преобразования, то есть использования земных технологий для нормализации температуры, экологии, атмосферы и т.д. Ближайшим к нам небесным объектом в Солнечной системе выступает Луна, поэтому футуристы задумывались о том, возможно ли терраформирование Луны .

Земной спутник выступает наиболее привлекательной целью, потому что находится близко, нам уже удалось высадить туда людей, обладаем наибольшем количеством информации о нем и на доставку потратим наименьше времени. Как же будет выглядеть колонизация Луны?

Терраформирование Луны

Лунная колонизация в литературе

Это одна из популярнейших тем в научной фантастике. Есть много примеров с использованием куполов или же постройкой жилищ под поверхностью, но были и случаи, где сам спутник становился пригодной средой обитания.

Наиболее ранний – рассказ «День парижанина в 21-м веке», написанный в 1910 году Октавом Беллардом. Он описал, как на Луне постепенно сформировали атмосферный слой, насадили растений и создали колонии.

В 1936 году появился «Потерянный рай» от К. Л. Мура. В центре находится история о пилоте космического корабля, живущего в заселенной системе. Несколько историй о лунной колонии вышло от Артура Кларка в 1950-1970-х гг. В 1955 году у него появился «Земной свет», где наш спутник оказался под перестрелкой между Землей и объединенными Марсом и Венерой.

В 1968 году появился еще один его роман «2001: Космическая одиссея», где была заселенная Луна и странный монолит. Позже снимут одноименный фильм. О поселениях писал Роберт А. Хейнлейн, где на спутнике проживала семья камней.

Было также много романов о лунатиках – лунном народе, вынужденном жить под землей. В некоторых историях они были миролюбивыми и даже отправляли на Землю продукты питания и помощь, а в других – объявляли нам войну.

Исследования Луны

В последнее время все чаще поднимаются темы постройки базы на спутнике. Главным толчком стала серия миссий Аполлон. Сейчас многие поддерживают идею вернуться к Луне до 2020-го года. Но эти мысли возникали намного раньше 20-го века.

Еще в 1638 году епископ Джон Уилкинс написал трактат, где пророчил лунное поселение. Первым о космическом лифте заговорил Константин Циолковский, который также утверждал, что лунная колония станет важным шагом в освоении глубокого космоса.

В период программы Аполлон обсуждали идею не только высадить астронавтов на поверхность, но и заняться постройкой постоянного поста. В 1954 году Артур Кларк предложил использовать надувные модели, которые можно покрыть лунной пылью, гарантирующей защиту и изоляцию.

Он предлагал, чтобы космонавты сначала построили иглуподобные конструкции и надувные радиомачты, что позже станет крупным стабильным куполом. Также он говорил, что можно очистить воздух при помощи фильтра из водорослей, а ядерным реактором обеспечивать энергию.

Появлялись также идеи колонизации Луны с военными базами. Это был проект Горизонт (США) в 1967 году.

В 1962 году возник проект с лунным фортом, который мог расположиться под поверхностью Моря Спокойствия, а энергия создавалась ядерными реакторами. В 2006 году японцы заявили о своем намерении к 2030-му году создать на спутнике базу. О том же говорили Франция и Россия в 2007 году.

В 2014 года представители НАСА серьезно взялись за решение вопроса и в 2015 году подготовили концепцию лунного поселения, где основную работу будут делать роботы.

Потенциальные методы терраформирования Луны

Не будем забывать, что подобные миссии сталкиваются с рядом проблем. Начнем с того, что у Луны слишком тонкий слой атмосферы (экзосфера) и летучих элементов крайне мало. На нижнем рисунке можно увидеть, как будет выглядеть измененная и освоенная Луна с постоянной колонией.

Проблемы можно решить, если научиться захватывать пролетающие мимо кометы, внутри которых есть водяной лед и летучие вещества. Кометы бы рассеивались и постепенно сформировали атмосферный слой. Даже удары высвободят спрятанную в реголите воду.

Импульс от комет приведет к тому, что лунное вращение ускорится, и она выйдет из блока с нашей планетой. Луна с 24-часовым циклом стала бы более доступной для адаптации. Также для колонии можно использовать кратеры с водяным льдом. Там можно быстрее создать атмосферу и вырастить растения.

Потенциальные преимущества терраформирования Луны

Прежде всего, Луна ближе всех расположена к Земле, поэтому затраты на колонизацию будут значительно ниже.

Тем более, что направить в ее сторону кометы намного проще. И если для других объектов понадобятся тысячи, то здесь хватить и сотни. Поверхностную воду можно создать из водяного льда в лунном грунте, а также полярных тайников. Для этого нужно добавить аммиачные или метановые льды, которые можно добыть из пояса Койпера.

К тому же колония сможет себя обеспечить, используя местные ресурсы. Луна по составу напоминает нашу планету, поэтому их можно применить в качестве защиты от радиации. В верхнем слое почвы много гелия-3, который используется в термоядерных реакторах.

Луна рассматривается как некая перевалочная база для дальних космических миссий. Можно будет использовать лунную воду для формирования водородного топлива и это сэкономит миллиарды долларов. Тем более, что с освоением Луны будет намного проще перейти к Марсу и дальше.

Спутник обладает низкой гравитацией, поэтому ракету проще запустить. К тому же, это своеобразная тренировка и попытка населить чужой объект. В конце концов, марсианские условия намного враждебнее. Не будем забывать о целой сети лавовых труб, чьи масштабы позволяют создать крупный город.

Потенциальные вызовы при терраформировании Луны

У нас все еще нет необходимых инструментов для массового сбора комет, тем более, что на их создание придется хорошенько потратиться. Представьте, что нам необходимо где-то достать хотя бы сотню космических кораблей с мощным двигателем, способным совершить полет в обе стороны за короткий временной промежуток.

Мы все еще пытаемся справиться с влиянием микрогравитации, которая атрофирует мышцы и разрушает кости. На саму трансформацию спутника (создание атмосферы, экологии, растительности) уйдет много времени.

Давайте также не забывать об особенностях спутника. Лунные ночи длятся 354 часа, поэтому нам нужно как-то выкручиваться без солнечной энергии (это не касается полярных участков). Поселения должны будут создать источник обогрева, чтобы справиться с серьезными температурными колебаниями.

Отсутствие атмосферы приводит к незащищенности перед лучами и метеоритными ударами. Многие проблемы решают подземные колонии возле полярных регионов, которые сильнее всего освещены. Или же придется использовать термоядерные реакторы.

Зачем так мучится? Потому что среди всех объектов в Солнечной системе Луна выступает максимально дешевым вариантом. Это попытка покорить небесное тело и проверить наши силы. К тому же ее ресурсы можно будет использовать и на Земле.

Несмотря на то , что, по мнению многих ученых, Луна является наиболее привлекательным космическим объектом для потенциальной колонизации, на начальном этапе осуществления подобного проекта все равно потребуется предварительное терраформирование спутника. Методы терраформирования в каждом конкретном случае определяются в зависимости от таких факторов, как размеры космического тела, наличие атмосферы, силы притяжения, магнитного пол, а также основных элементов, необходимых для зарождения и поддержания жизнедеятельности.

Итак, что касается Луны, то площадь поверхности спутника немного превышает площадь Африки. На Луне слабая гравитация, которая не позволяет спутнику удержать плотную атмосферу. Ускорение свободного падения здесь равно 1,62 м/с2. Даже если попытаться искусственно создать атмосферу на Луне, используя привозные материалы, то спутник вряд ли сможет удержать ее. В лучшем случае, состояние атмосферы необходимо будет постоянно поддерживать с помощью дополнительного ввоза материалов. Поэтому на данном этапе ученые рассматривают пока лишь возможность создания изолированных купольных поселений – закрытых экологических систем.

Однако вернемся все же к планам по терраформированию спутника. Как уже было отмечено выше, первым этапом терраформирования является создание атмосферы. Для достижения этой цели ученые предлагают метод бомбардировки поверхности Луны ледяными астероидами. Однако из-за непосредственной близости Земли подобная бомбардировка может представлять угрозу для нашей планеты, поэтому данный метод требует очень точный расчетов, а также анализа возможных нештатных ситуаций. Исходя из этого, уже сейчас можно твердо заявить, что это должны быть не очень крупные астероиды с диаметром не более нескольких сотен метров, а сама бомбардировка должна производиться по касательной траектории к поверхности, направленной прочь от планеты.

Однако, по мнению некоторых специалистов, для создания атмосферы вовсе необязательно производить бомбардировку, достаточно вывести астероиды на низкую окололунную орбиту таким образом, чтобы астероиды постоянно сталкивались друг с другом и дробились. При этом ожидается, что мелкие кристаллы льда попадут в зону притяжения Луны и создадут экваториальное атмосферное кольцо, которое со временем распространится по всей поверхности. Таким образом, будет создана первичная атмосфера, в условиях которой можно даже обратиться к методу бомбардировки астероидами, которая будет проходить теперь гораздо мягче.

Учеными также теоретически рассматривается возможность изменить наклон оси Луны для обеспечения на спутнике смены времен года, а также придать ей суточное вращение (на данный момент сутки на спутнике длятся 28 земных дней).

Второй этап по террафомированию спутника может заключаться в заселении поверхности земными бактериями и водорослями, которые были бы достаточно устойчивыми для выживания в условиях первичной атмосферы и солнечной радиации.

Стоит отметить, что многие относятся к потенциальной колонизации Луны критически, заявляя, что тот же Марс (несмотря на его отдаленность) является более привлекательным объектом. Неблагоприятными факторами, которые могут сильно помешать осуществлению плана, являются лунные сутки, малопригодные для поддержания жизни растений, сильная солнечная радиация, значительные перепады суточных температур и так далее. Тем не менее, ученые продолжают разрабатывать план по освоению спутника. Основным стимулом для них служит гелий-3 (редкий изотоп, использующийся на предприятиях термоядерного синтеза), который в больших количествах содержится в почвах Луны.

Практическое значение терраформирования обусловлено необходимостью обеспечить нормальное существование и развитие человечества. С течением времени рост населения Земли, экологические и климатические изменения могут создать ситуацию, когда недостаток пригодной для обитания территории поставит под угрозу дальнейшее существование и развитие земной цивилизации. Такую ситуацию, например, создадут неизбежные изменения размеров и активности Солнца , которые чрезвычайно изменят условия жизни на Земле. Поэтому человечество будет естественным образом стремиться к перемещению в более комфортный пояс.

Помимо природных факторов, существенную роль могут сыграть и последствия деятельности самого человечества: экономическая или геополитическая ситуация на планете; глобальная катастрофа , вызванная применением оружия массового поражения ; истощение природных ресурсов планеты и др.

Возможность переселения во внеземные колонии со временем может привести к формированию культурных традиций, где переселение людей в колонии будет идти постоянно в течение многих поколений. Культурные традиции могут быть изменены прогрессом медицины , что может привести к значительному продлению человеческой жизни . Это, в свою очередь, может привести к «конфликту поколений», когда представители более молодых поколений и более старших начнут бороться между собой за жизненные ресурсы. Вообще, возможность решения политических конфликтов путём эмиграции диссидентов в колонии может значительно изменить политическую структуру многих демократических государств. В таком случае, процесс создания новых колоний будет подобен процессу строительства «элитных» микрорайонов , когда колонии создаются коммерческими структурами в надежде на окупаемость; или наоборот, строительству государственного жилья для малоимущих слоев населения для уменьшения уровня преступности в трущобах и уменьшения влияния политической оппозиции в них. Рано или поздно «недвижимость » в Солнечной системе будет поделена и процесс переселения не будет ограничиваться существующими в Солнечной системе планетарными объектами, но будет направлен в сторону других звездных систем. Вопрос об осуществимости подобных проектов упирается в технологичность и выделение достаточных ресурсов. Как и в любых других сверхпроектах (как, например, строительство огромных ГЭС или железных дорог «от моря до моря», или, скажем, Панамского канала), риск и размер инвестиций слишком велик для одной организации и с большой вероятностью потребует вмешательства государственных структур и привлечения соответствующих инвестиций. Время реализации проектов по терраформированию околоземного пространства в лучшем случае может измеряться десятилетиями или даже столетиями .

Критерии пригодности планет к терраформированию

  • Обитаемая планета (планета типа Земли), наиболее пригодная к заселению.
  • Биологически сопоставимая планета, то есть планета в состоянии, подобном земному, миллиарды лет назад.
  • Легко терраформируемая планета. Терраформирование планеты такого типа возможно провести с минимальными затратами. Например, планету с температурой, превышающей оптимум для биосферы Земного типа, можно охладить путём распыления пыли в атмосфере по принципу «ядерной зимы ». А планету с недостаточно высокой температурой, наоборот, нагреть путём осуществления направленных ядерных ударов в залежи гидратов , что привело бы к выбросу в атмосферу парниковых газов.

Далеко не всякая планета может быть пригодна не только к заселению, но и к терраформированию. К примеру, в Солнечной системе непригодными к терраформированию являются газовые гиганты , поскольку они не имеют твердой поверхности, а также обладают высокой гравитацией (например, у Юпитера - 2,4 , то есть 23,54 м/с²) и сильным радиационным фоном (при сближении с Юпитером космический аппарат «Галилео» получил дозу радиации, в 25 раз превышающую смертельную дозу для человека). В Солнечной системе наиболее подходящими условиями для поддержания жизни после терраформирования обладает прежде всего Марс . Остальные планеты либо мало пригодны к терраформированию, либо встречают значительные трудности в преобразовании климатических условий.

Пригодность планет к терраформированию зависит от физических условий, в которых эти планеты находятся. Основными из этих условий являются:

  • Ускорение свободного падения на поверхности планеты . Гравитация терраформируемой планеты должна быть достаточной для удержания атмосферы с соответствующим газовым составом и влажностью. Планеты, имеющие слишком малые размеры и, следовательно, массу, совершенно непригодны, так как будет происходить быстрая утечка атмосферы в космическое пространство . Кроме того, определённая степень притяжения необходима для нормального существования на планете живых организмов, их размножения и устойчивого развития. Слишком высокая гравитация также может сделать планету непригодной для терраформирования, ввиду невозможности комфортного существования на ней людей.
  • Объём принимаемой солнечной энергии . Для проведения работ по терраформированию планет необходим достаточный объём солнечной энергии для прогрева поверхности и атмосферы планеты. Прежде всего, освещенность планеты Солнцем (равно как и любой другой родительской звездой) должна быть достаточной для прогрева атмосферы планеты как минимум до достижения искусственного парникового эффекта для поддержания температур на поверхности, достаточных для устойчивого нахождения воды в жидком состоянии. Освещенность также необходима для осуществления воспроизводства энергии с помощью фото- или термопреобразователей и выполнения задач по терраформированию. С точки зрения освещенности зона, в которой есть необходимый объём солнечной энергии и в которой находятся подходящие планеты, достигает орбиты Сатурна, а следовательно в более глубоких областях космоса терраформирование в настоящее время невозможно. В будущем, при расширении Солнца, уровень энергии, достаточный для кратковременного (несколько сот миллионов лет) поддержания жизни, окажется в пределах орбиты Плутона или же даже в ближних областях Пояса Койпера .
  • Наличие воды . Необходимое для поддержания заселения планеты растениями и животными количество воды - это одно из неизменных условий для возможностей заселения и успешного терраформирования. В Солнечной системе не так много планет, располагающих достаточными объёмами воды, и в этой связи кроме Земли может быть упомянут лишь Марс и спутники Юпитера (Европа , Ганимед , Каллисто) и Сатурна. В иных случаях необходимо либо завезти воду на планету с помощью технических средств, либо отказаться от терраформирования. Планеты с чрезмерным количеством воды , а также покрытые сплошным слоем льда упомянутые выше спутники Юпитера и Сатурна также могут быть малопригодны для заселения по той причине, что колонистам пришлось бы доставлять все необходимые элементы таблицы Менделеева с собой, так как все полезные ископаемые будут погребены под многокилометровым слоем льда.
  • Радиационный фон на планете.
  • Характеристика поверхности . Очевидно, что на планетах типа «газовый гигант» создать твердую поверхность практически невозможно. Технологический уровень для этого должен быть на порядок выше, чем для «размораживания» землеподобной планеты путём распыления сажи по поверхности. То же самое относится к планете с аммиачными ледниками глубиной несколько сот километров или к планете с высокой вулканической активностью . Проблемы, связанные с постоянными извержениями расплавленных пород, землетрясениями или приливными волнами (аналогичными цунами на Земле), также создадут существенные проблемы при терраформировании.
  • Наличие у планеты магнитного поля . В последнее время появились данные, что при отсутствии магнитного поля солнечный ветер активно взаимодействует с верхними слоями атмосферы. При этом молекулы воды расщепляются на водород и гидроксильную группу OH . Водород покидает планету, которая полностью обезвоживается. Подобный механизм действует на Венере .
  • Астероидная ситуация . В планетной системе , где астероидная ситуация отличается от нашей в худшую сторону, то есть где астероидный пояс находится в опасной близости от предполагаемого места заселения, планета может находиться под угрозой частых столкновений с астероидами, которые могут нанести существенный ущерб поверхности планеты и тем самым вернуть её в прежнее состояние (до терраформирования). Это означает, что в такой системе терраформаторы должны будут создать средства «регулировки астероидного движения», что потребует достаточно высокого технологического уровня.

«Условия пригодности для обитания флоры и фауны» по МакКею

Параметр Значение Пояснение
Средняя температура 0 - 30 °C Средняя температура поверхности должна составлять около 15 °C
Флора
Среднее атмосферное давление > 10 кПа Основными компонентами атмосферы должны быть водяной пар , O 2 , N 2 , CO 2
Парциальное давление O 2 > 0,1 кПа Дыхание растений
Парциальное давление CO 2 > 15 Па Нижний предел для условия протекания реакции фотосинтеза ; нет однозначного верхнего предела
Парциальное давление N 2 > 0,1-1 кПа Азотфиксация
Фауна
Среднее атмосферное давление > 5 кПа
< 500 кПа
Парциальное давление O 2 > 25 кПа
Парциальное давление CO 2 < 10 кПа Ограничение содержания CO 2 для избежания интоксикации
Парциальное давление N 2 > 30 кПа Буферное содержание

Орбиты планет в системе Глизе 581

Претерраформирование

Претерраформирование (paraterraforming ) - промежуточный шаг между планетной станцией и окончательным терраформированием, например, построение города-сада , по сути огромной искусственной биосферы . Подобного рода теплица -биосфера может охватывать всю планету, в особенности в условиях низкой гравитации, при которой вокруг планеты не удерживается собственная атмосфера. Такое технологическое решение также устраняет проблему охлаждения атмосферы: внутреннюю поверхность теплицы можно покрыть микроскопически тонким слоем алюминия , отражающего инфракрасное излучение . При подобном варианте терраформирования колонисты получают комфортабельные условия для жизни практически сразу по прибытии на планету, поскольку технологически не представляет сложности сделать защитный купол из лёгкого материала так, чтобы он мог быть перевезён на одном транспортном корабле приемлемого размера. Купол может быть сделан из мягкого материала и поддерживать свою форму за счёт внутреннего давления. Однако при колонизации планет с плотной атмосферой (напр., Венера) этот вариант неприменим. (В условиях Венеры или подобной ей планеты с плотной атмосферой возможен вариант создания гигантского поселения купольного типа, превращённого в аэростат , так как земной воздух , то есть смесь азота с 21 % кислорода, весит легче, чем венерианская атмосфера , причем подъёмная сила воздуха в атмосфере Венеры составляет около 40 % от подъёмной силы гелия.) При высоте крыши купола в несколько километров внутри такой биосферы климат будет подобен земному и может быть управляем. Подобную колонию можно разместить в геологическом понижении, например, в кратере или долине , чтобы разместить основание купола над дном понижения. В современных крупных городах плотность населения порой достигает 10.000 чел./км² . При этом находится место для парков , садов , пляжей и других заведений рекреационного типа, предоставляющих жителям возможность отдыха . Для колонии размером миллион человек необходимо будет построить биосферу размером порядка 100 км², то есть полусферу диаметром 12 км и весом (без растяжек, каркаса и прочих поддерживающих устройств) 15 тысяч тонн или 15 кг на человека (то есть меньше ручного багажа, который позволяют нести пассажирам самолета). Несомненно будет существовать опасность разгерметизации системы при таких нештатных ситуациях, как падение астероида , крушение космического корабля или теракт . В случае ведения военных действий поверхность купола будет первой целью неприятеля. Это означает, что подобная колония будет вынуждена тратить значительные ресурсы на мероприятия оборонного типа . Так или иначе концепция биосферы вполне реалистична с учетом развития современных технологий, и вопрос осуществимости проекта упирается в удешевление доставки грузов на «высокую» орбиту Земли, что на данный момент стоит около $ 10 000 за кг.

Перспективы терраформирования планет и спутников Солнечной системы

Луна

Терраформированная Луна, вид с Земли; рисунок художника

Луна - это естественный спутник Земли и самый близкий естественный объект к Земле, и в обозримом будущем вероятность её терраформирования достаточно велика. Площадь поверхности Луны составляет 37,9 млн км² (больше, чем площадь Африки), а ускорение свободного падения на поверхности 1,62 м/с². Луна способна удержать в течение неопределённо долгого срока лишь атмосферу из наиболее тяжёлых газов, таких, как ксенон; в силу невысокой гравитации атмосфера, состоящая из кислорода и азота , будет быстро (в течение десятков тысяч лет) рассеиваться в космическом пространстве. Приблизительные расчёты скорости молекул газов при прогреве, например, до 25-30 °C оказываются в пределах нескольких сотен метров в секунду, в то же время вторая космическая скорость на Луне около 2 км/сек, что обеспечивает длительное удержание искусственно созданной атмосферы (время падения плотности атмосферы в 2 раза для воздуха составляет около 10 000 лет). Луна не имеет магнитосферы и не может противостоять солнечному ветру . Экономически выгодно оставить Луну в прежнем виде. Она может иметь роль своеобразного «космопорта» Земли.

Основные способы терраформирования Луны

  • Бомбардировка астероидами : водно-аммиачные льды.
  • Биогенное воздействие : введение земных бактерий и водорослей, устойчивых к первичной искусственной атмосфере Луны и условиям жёсткой солнечной радиации.

Марс

Терраформирование Марса в четыре этапа, рисунок художника

Марс является наиболее подходящим кандидатом на терраформирование (площадь поверхности равна 144,8 млн км², что является 28,4 % от поверхности Земли). Ускорение свободного падения на поверхности Марса составляет 3,72 м/с², а количество солнечной энергии, принимаемой поверхностью Марса, составляет 43 % от количества, принимаемого поверхностью Земли. На данный момент Марс представляет собой, возможно, безжизненную планету. В то же время, полученный объём информации о Марсе позволяет говорить о том, что природные условия на нём были некогда благоприятны для зарождения и поддержания жизни . Марс располагает значительными количествами водного льда и несёт на своей поверхности многочисленные следы благоприятного климата в прошлом: высохшие речные долины, залежи глины и многое другое. Многие современные учёные сходятся в едином мнении о том, что планету возможно нагреть, и создать на ней относительно плотную атмосферу, и NASA даже проводит дискуссии по этому поводу .

Венера

Топографическая карта Венеры

Терраформированная Венера; рисунок художника

Меркурий

Терраформирование Меркурия представляет собой несравненно более тяжёлую задачу, чем терраформирование Луны, Марса или Венеры. Площадь поверхности Меркурия составляет 75 млн км², как Северная Америка и Евразия , а ускорение свободного падения - 3,7 м/с². Он способен удержать относительно плотную атмосферу, изготовленную из привозного материала (водно-аммиачные льды). Наибольшими препятствиями на пути терраформирования Меркурия являются его близкое положение к Солнцу и крайне медленное вращение вокруг оси. Уровень солнечной энергии, падающей на поверхность Меркурия, весьма различен и в зависимости от времени года и широты составляет от 0 (в кратерах на полюсах, которые никогда не видят солнечного света) до 11 кВт/м². При точно рассчитанной бомбардировке Меркурия астероидами эти недостатки могут быть устранены, но потребуют очень больших расходов энергии и времени. Вполне вероятно, в отдалённом будущем человечество будет обладать возможностями смещать планеты со своих орбит. Наиболее предпочтительно было бы «поднять» орбиту Меркурия на 20-30 млн км от её нынешнего положения. Важную роль в терраформировании Меркурия может сыграть солнечная энергия, которую уже на современном этапе развития технологий можно эффективно использовать. Меркурий - планета достаточно плотная и содержит большое количество металлов (железо , никель), и, возможно, значительное количество ядерного топлива (уран, торий), которые могут быть использованы для освоения планеты. К тому же, близость Меркурия к Солнцу позволяет предполагать наличие значительных запасов гелия-3 в поверхностных породах.

Титан (спутник Сатурна)

Спутники Юпитера

Планеты-гиганты

Другие кандидаты для колонизации

Теоретически рассматриваются (например, Роберт Зубрин «Settling the Outer Solar System: The Sources of Power ») многие планеты и спутники планет. Из наиболее часто упоминаемых кандидатов стоит назвать остальные, менее крупные спутники Сатурна - Тефия , Диона , Рея , Япет и Энцелад , где, возможно, есть жидкая вода , карликовая планета Церера , пять наиболее крупных спутников Урана (Ариэль , Оберон , Титания , Умбриэль и Миранда) и спутник Нептуна - Тритон и даже более отдаленные карликовые планеты и другие объекты - Плутон и Харон , и т. д. Для заселения этих объектов потребовались бы огромные затраты энергии.

Технические возможности осуществления

На современном этапе развития технологий возможности для проведения терраформирования климатических условий на других планетах весьма ограничены. Уже к концу XX-го века земляне обладали возможностями для запуска ракет к наиболее далеким планетам Солнечной системы для выполнения задач научного характера. Мощности и скорости, а также возможности масштабного запуска ракет в космос в начале XXI века значительно возросли, и в случае спонсирования крупными космическими державами, такими как США , Россия или Китай , уже в наши дни человечеству вполне под силу выполнение определённых задач по терраформированию планет. В настоящее время возможности современной астрономии, ракетной, вычислительной техники и других областей высоких технологий прямо или косвенно позволяют, например, буксировать небольшие астероиды , вносить небольшие объёмы бактерий в атмосферы или почву других планет, доставлять необходимое энергетическое, научное и др. оборудование.

В настоящее время достигнут некоторый уровень кооперации между различными космическими агентствами, которые в прошлом работали параллельно. Если предположить, что такая практика будет существовать и в будущем, то развитие технологии освоения космоса несомненно будет продолжаться быстрыми темпами. Мировой ВВП в конце первого десятилетия 21-го века составляет около $70 трлн, и, при наличии согласия между мировыми лидерами, мог бы позволить гораздо более щедрое выделение средств на развитие космонавтики. Учитывая, что статистика развития мировой экономики указывает на ускорение темпов её развития, то можно предположить, что выделение сравнительно малого процента мирового ВВП для финансирования сможет теоретически ускорить разработку необходимых технологий в десятки раз и даже сотни раз (бюджет НАСА например в 2009 г. составляет около $17 млрд/год. С 1958 по 2008 годы НАСА на космические программы истратила (с учётом инфляции) около $810,5 млрд)

Важнейшие задачи учёных-терраформистов

Удешевление доставки грузов в космос

Терраформирование планет подразумевает необходимость доставки значительного количества грузов с поверхности Земли на высокую орбиту. Ввиду неприемлемости использования ядерных ракетных двигателей в атмосфере Земли и практических ограничений на использование существующих ракетных двигателей, необходимо использовать альтернативные системы доставки грузов на орбиту :

  • Антигравитационный корабль - на данный момент неосуществимый проект.
  • Прочие проекты, как, например, наземная лазерная пушка для ускорения корабля в космосе .

Увеличение скорости межпланетных перевозок

Груз, доставленный на высокую орбиту, необходимо будет доставить непосредственно на терраформируемую планету. В настоящее время для межпланетных полетов используется гравитация «попутных» планет. Такой подход не приемлем для регулярных грузо-пассажирских перевозок в пределах Солнечной системы. Необходимо использование ядерных ракетных двигателей. В отличие от обычной химической ракеты, ядерный двигатель может представлять собой комбинацию ядерного реактора и ионного двигателя , экономно расходующего рабочее тело и позволяющего обеспечить длительный срок активного разгона космического аппарата . Принцип работы ионного двигателя заключается в ионизации газа и его разгоне электростатическим полем. Благодаря высокому отношению заряда к массе становится возможным разогнать ионы до очень высоких скоростей (210 км/с по сравнению с 3-4.5 км/с у химических ракетных двигателей). Таким образом, в ионном двигателе можно достичь очень большого удельного импульса , что позволяет значительно уменьшить расход реактивной массы ионизированного газа по сравнению с расходом реактивной массы в химических ракетах . Первоочередной задачей является значительное (в тысячи раз) увеличение мощности подобных двигателей и создания соответствующих им по мощности ядерных реакторов . При условии отсутствия атмосферы грузовой корабль может постепенно разгоняться, набирая скорость от 10 до 100 км/с. Увеличение скорости полёта особенно важно для пассажирских перевозок, при которых необходимо уменьшить получаемую пассажирами дозу радиации, главным образом - за счёт сокращения времени перелета. Основные трудности в реализации работ по ядерным ракетным двигателям заключаются как в высокой степени радиоактивного загрязнения продуктами выброса двигателя, так и в неприятии подобной технологии населением, а также экологическим движением стран-разработчиков (ведущие страны - Россия, США). Здесь также возможно использование Луны как межпланетно-транзитного пункта, что позволило бы не подвергать земную атмосферу радиоактивному загрязнению (доставляя необходимые ресурсы с Земли на Луну на более экологически чистых ракетах, и их транзит на ракетах с ядерными двигателями)

Термоядерная энергетика и гелий-3

Общее количество гелия-3 в атмосфере Земли оценивается в 35 000 тонн, его добывают в очень небольших количествах, исчисляемых несколькими десятками граммов за год, однако на Луне он находится в значительном количестве. В настоящее время контролируемая термоядерная реакция осуществляется путём синтеза дейтерия 2 H и трития 3 H с выделением гелия-4 4 He и «быстрого» нейтрона n :

Однако при этом большая часть выделяемой кинетической энергии приходится на нейтрон. В результате столкновений осколков с другими атомами эта энергия преобразуется в тепловую . Помимо этого, быстрые нейтроны создают значительное количество радиоактивных отходов . В отличие от этого синтез дейтерия и гелия-3 3 He не производит радиоактивных продуктов:

Где p - протон

Это позволяет использовать более простые и эффективные системы преобразования кинетической реакции синтеза, такие, как магнитогидродинамический генератор .

Характеристика объектов Солнечной системы

Планета (Центральное тело) Температура поверхности, °C Атмосферное давление , кПа Гравитация в зоне экватора Площадь поверхности, млн км² Орбитальный период , часов Сидерический период , суток Минимальное расстояние от Земли, млн км
миним. средняя максим. м/с² g
Луна -160 -23 +120 ~0 1,62 0,17 38 655 27,3 0,36
Марс −123 -63 +27 0,6 3,72 0,38 145 24,6 687 56
Венера -45 +464 +500 9 322 8,87 0,90 460 5832 224 45
Меркурий -183 +350 +427 ~0 3,70 0,38 75 1408 87,9 90
Титан (Сатурн) н/д −180 н/д 160 1,35 0,14 83 381,6 15,9 1250
Европа (Юпитер) -223 -170 -148 10 −9 1,31 0,13 31 10 3,6 588
Ганимед (Юпитер) н/д -165 н/д ~0 1,43 0,15 87 10 7,2 587
Каллисто (Юпитер) н/д -155 н/д 10 −6 1,24 0,13 73 10 16,7 585
Ио (Юпитер) -185 -145 +2300 ~0 1,79 0,18 42 10 1,7 588
Тритон (Нептун) н/д -235 н/д 0,15*10 −2 0,8 0,09 23,018 16 5,88 4 337
Юпитер -165 -125 н/д 200 23,10 2.36 61 400 10 4 333 588
Сатурн -191 -130 н/д 140 9,05 0,92 43 800 10,5 10 750 1 277
Уран -214 -205 н/д 120 8,69 0,89 8 084 17 30 707 2 584
Нептун -223 -220 н/д 100 11,15 1,14 7 619 16 60 223 4 337
Церера (Солнце) н/д -106 -34 ~0 0,27 0,02 11 9 1 680 231
Эрида (Солнце) -243 -230 -218 ~0 0.8 0.08 18 н/д 203 500 5 497
Плутон (Солнце) -240 -229 -218 0,3*10 −3 0,58 0.06 17,95 153 90 613 4 285
Макемаке (Солнце) н/д -243 н/д ~0 0.5 0.05 6,3 н/д 113 179 5 608
Иксион (Солнце) н/д -229 н/д ~0 0.23 0.02 2 н/д 91 295 4 349
Орк (Солнце) н/д -228 н/д ~0 0.20 0.02 11 н/д 90 396 4 415
Квавар (Солнце) н/д -230 н/д ~0 ~0.33 ~0.03 20 н/д 104 450 6 117
Седна (Солнце) н/д < -240 н/д ~0 ~0.49 ~0.04 ~28 10 4 401 380 11 423

Альтернатива терраформированию планет

Карта плотности населения Земли

Альтернативой терраформированию является более полное и рациональное использование территориальных и энергетических возможностей самой Земли. Площадь поверхности Земли составляет 510,1 млн км², что больше, чем у любой другой планеты земной группы в Солнечной системе. При этом площадь поверхности суши составляет 148,9 млн км², что немногим более всей площади поверхности Марса, а площадь мирового океана - 361,1 млн км². С ростом технологического уровня для человечества станет доступным более рациональное использование как площади современной суши , так и освоение донного пространства мирового океана , в том числе за счёт развития подземной инфраструктуры (вынесение под землю крупных предприятий, электростанций, автостоянок, а также развитие подземного транспорта и жилья) и должная подготовка дна мирового океана. Водная поверхность пригодна для обитания уже в наши дни. Сооружения понтонного типа (например, аэропорты) уже строятся в некоторых густонаселенных странах. С созданием экономичных технологий могут появится и плавающие города. Один из наиболее известных проектов, в рамках которых ведутся подобные разработки - «Freedom Ship » .

Поскольку терраформирование в данный момент является по большей части умозрительной технологией, основанной на существующих в данный момент технологических решениях, схожих по своему духу с колонизацией незаселенных территорий земли, то можно предположить, что в далеком будущем проблемы обитания людей на других планетах будут решаться не только изменением облика этих планет, но и другими способами, схожими с теми, которые применялись в прошлом. Например, колонизация многих тропических стран не удалась по причине высокой смертности колонистов из-за тропических болезней, и от таких колоний часто оставались лишь потомки колонистов, смешавшихся с местными жителями. В фантастике проблемы обитания разумных существ в чуждых им условиях зачастую «решаются» путем изменения биологии самих людей - превращения их в инопланетян, андроидов или богоподобных существ (как например в серии звездные врата или в фильме Супермен). Также часто используются такие решения, как существование людей в полностью симулированной реальности (как в фильме Матрица) или частично симулированной реальности (голопалуба в серии Звездный путь или остров, сделанный из стабилизированных нейтрино , как в фильме Солярис). Помимо этого часто используются такие приемы, как использование технологий телепортации , защитных экранов, антигравитации и т. д., позволяющих людям существовать в вакууме, смертельной радиации, высокой гравитации и т. п.

Наконец, наиболее простым и естественным способом является жёсткое ограничение прироста населения с его дальнейшим плавным, за счёт естественной смертности сокращением до разумного уровня с целью доведения потребления ресурсов до возможного минимума, при одновременном введении евгенических программ с целью предотвращения вырождения человеческой популяции и максимальном переходе на возобновляемые источники ресурсов. Собственно говоря, именно этот способ хотя и бессознательно, но вполне успешно использовался человечеством на протяжении тысяч лет, вплоть до «демографической революции» и перехода от относительно стабильного населения Земли к постоянно растущему, что достигалось за счёт естественных факторов, таких, как постоянные войны, эпидемии, потери от агрессивной окружающей среды и высочайшая детская смертность при постоянном воздействии факторов естественного отбора. Однако, его практическая реализация в настоящее время вступает в конфликт с такими «фундаментальными» достижениями современной цивилизации, как индивидуалистические права и свободы человека, включая свободу полового поведения и право на неограниченное размножение, а также с соображениями сохранения суверенитета существующих национальных государств, мешающего введению эффективной глобальной системы демографической регуляции, основанной на потребностях человечества как глобального вида, а не местечковых правительств, в основном преследующих узко этноэгоистические цели.

Последствия терраформирования для развития цивилизации

Влияние микрогравитации на распределение жидкости в организме

Уже на заре осмысления процессов терраформирования стало ясно, что последствия для всего развития цивилизации будут носить кардинально новый характер и глобальный масштаб. Последствия эти затронут все аспекты жизни человечества, от физиологии живых организмов до религии . Характер этих последствий будет носить как положительные, так и отрицательные стороны. В самом деле, людям придется принять вследствие переселения на другие планеты, совершенно новые природные условия, и это найдет прямое отражение как в организмах людей, так и в их сознании. Например, открытие Америки и заселение её территорий оказало очень большое воздействие на ход развития всей цивилизации, но оно не может идти ни в какое сравнение с тем преобразованием, которое несет с собой заселение и терраформирование иных планет.

Уже во время начала освоения космического пространства люди столкнулись с явлениями невесомости и микрогравитации, обнаружив их поразительное физиологическое воздействие на организм человека . Иной вкус у пищи, атрофия мышц и многое другое заставили землян посмотреть на космос другими глазами, и в результате родилась космическая медицина . В случае переселения и последующего проживания на других планетах, земляне неизбежно столкнутся со значительными изменениями в функционировании организмов и психологии будущих поколений первопоселенцев. Венера, Марс, спутники Юпитера и Титан обладают меньшей гравитацией, чем Земля, поэтому животные и растения должны будут приспособиться к новым условиям.

См. также

Терраформирование в литературе

  • «Вступление в космос (англ. )», Роберт Зубрин
  • «На Марс-2», Роберт Зубрин, Фрэнк Кроссман
  • «В защиту Марса», Роберт Зубрин
  • «Предприятие „Марс“», Роберт Зубрин
  • «Цивилизации космических кочевников», Роберт Зубрин
  • «Багряная планета» Жемайтис Сергей
  • «За перевалом», Владимир Савченко
  • «Марсианские хроники», Рэй Брэдбери - первые шаги, колонизация, терраформирование и жизнь на Марсе
  • «Марсианская трилогия», Ким Стенли Робинсон
  • «Фермер в небе», Роберт Хайнлайн - земляне терраформируют Ганимед .
  • «Вентус (англ. )», Шрёдер, Карл (фантаст) (англ. ) - о возможных последствиях выхода из-под контроля сложных систем терраформирования
  • «Грозные границы», Майкл Гир (англ. ) - планеты, на которых обитает человечество в трилогии, были в прошлом терраформированы небиологическими существами с целью заманить и заключить человечество в выбранной ими области космоса
  • «Песни Гипериона » Дэна Симмонса - Большинство упоминаемых в романах планет подверглись терраформированию.
  • «Звёздная бабочка », Бернар Вербер - Создание огромного космического корабля, для переселения людей, животных, растений и бактерий на планету находящейся вдали от солнечной системы.
  • «Бегство Земли », (фр. Terre en fuite ) - научно-фантастический роман французского писателя Франсиса Карсака , изданный в 1960 году . На русском языке впервые был опубликован в 1972 году .
  • «Трилогия Древний», Тармашев Сергей. Учёный Серебряков вывел бактерию, которая очистила земную поверхность и атмосферу от последствий ядерной войны.
  • «День Астарты», Алекс Розов. Ключевое событие романа - искусственное изменение орбиты астероида для столкновения его с Венерой с целью её терраформирования.
  • «В простор планетный», Палей, Абрам Рувимович - весь роман посвящен описанию терраформирования Венеры.
  • «Сомнамбула», «Сомнамбула 2» и «Сомнамбула 3», литературный проект Этногенез - В трилогии очень часто упоминается слово «терраформирование». К моменту началу действия первой книги трилогии (2468 год н. э.) полностью терраформированны Луна и Марс, ведется терраформирование Венеры, на очереди Титан (спутник Сатурна). Отец главного героя Матвея Гумилева Степан Гумилев является главой корпорации «Кольцо», которая и занимается терраформированием планет.
  • В романе Роберта Чарльза Уилсона «Спин », довольно правдоподобно описано тераформирование Марса, занимающее миллионы лет с точки зрения Вселенной но всего несколько лет с точки зрения землян благодаря оболочке Спина вокруг Земли многократно замедляющей время внутри. Люди успевают не только тераформировать но и послать на Марс несколько сотен поселенцев, которые затем создают собственную марсианскую цивилизацию и посылают на прародину эмиссара.

Терраформирование в кинематографии

  • Через тернии к звёздам . Корабль послан помочь восстановить экологию планеты, на которой местные бизнесмены в погоне за наживой уничтожили всю живую природу.
  • Красная планета . В г. земные природные ресурсы истощены. Экспедиция на Марс должна основать колонию терраформистов. На Марсе посредством жуков-«нематод», поедающих водоросли, завезённые с Земли, и тем самым вырабатывающих кислород, достигнут уровень кислорода достаточный для дыхания.
  • Вспомнить всё . Главный герой спасает задыхающийся от нехватки кислорода Марс, включив спрятанные глубоко под поверхностью гигантские атмосферные машины, оставшиеся от бывшей марсианской цивилизации.
  • . В финале картины изображается преобразование спутника Юпитера Европы из безжизненной ледяной пустыни в цветущие джунгли.
  • Чужие . Коварный инопланетный хищник захватывает колонию терраформистов на LV-426.
  • Звёздный путь: Гнев Хана . Капитану Кирку и его экипажу необходимо второй раз победить старого врага, а попутно узнать о тайных экспериментах по трансформации планет.
  • Звёздные врата SG-1 (телесериал) . Во многих эпизодах показываются терраформированные планеты.
  • Прибытие . Инопланетные пришельцы строят планы на изменение климата Земли «под себя», подготавливая её к колонизации.
  • Дюна . Пустынная планета Арракис превращается в цветущую планету.
  • Светлячок (телесериал) и Миссия «Серенити» (фильм) . Действия разворачиваются в далёком будущем в звездной системе, в которой многие планеты и спутники были терраформированы.
  • Титан: После гибели Земли (мультфильм). Пригодная для жизни планета оборудуется орбитальной базой.

Колонизация Луны в фантастике

Тема создания человеческих поселений на Луне всегда была одной из самых популярных тем научной фантастики. И в то время, как подавляющее большинство историй описывают лунные поселения, которые строятся на поверхности с использованием герметичных куполов или под поверхностью, есть несколько примеров, в которых сама Луна является приятной и дружелюбной для проживания средой для людей.

Самый ранний известный пример - это, пожалуй, короткий рассказ «La Journée d’un Parisien au XXIe siècle» («День парижанина 21 века»), написанный французским автором Октавой Беллар. Вышедшая в 1910 году история рассказывает, как атмосфера Луны постепенно менялась и как выращивались растения, чтобы превратить Луну в рай для исчезающих видов и человеческих колонистов.

В 1936 году американская писательница К. Мур написала «Потерянный рай», роман про контрабандиста и космического рейнджера, живущего в колонизированной Солнечной системе. В романе Луна представлена как некогда плодородное место и описывается, как она постепенно стала безвоздушной пустыней. В 1945 году британский писатель К. Льюис написал роман, в котором Луна была домом для расы экстремальных евгеников.

Артур Кларк написал несколько романов и коротких рассказов про лунные колонии в 50-70 годы 20 века. В 1955 году он написал «Земной свет, в котором лунное население попало под перекрестный огонь, когда началась война между Землей и альянсом Венеры и Марса. В 1961 вышел роман «Лунная пыль», в котором туристический крейсер «Селена» погружался в море лунной пыли.

В 1968 году вышел знаменитый роман Кларка «Космическая Одиссея 2001 года», часть которого развивается на колонизированной Луне, где нашли загадочный монолит (магнитная аномалия Тихо). «Свидание с Рамой», выпущенный в 1973 году, также упоминает колонизированную Луну, которая стала частью объединенных планет Солнечной системы.

Роберт Хайнлайн тоже писал о людях на Луне. Среди его раннего - «Космическое семейство Стоун» (1952), про семейку Стоунов, живущую на Луне, которая хочет покинуть дом и исследовать Солнечную систему. В 1966 году он получил премию Хьюго за роман «Луна - суровая хозяйка», в котором подземная лунная колония снабжает Землю едой и минералами.

Нехватки в романах про Луну, как колонизированную, так и терраформированную, конечно, нет. Но это фантастика. Давайте посмотрим, как обстоят дела в реальности.

Наука лунных поселений

За последние несколько десятков лет предлагались многочисленные варианты строительства колонии (или колоний) на Луне. Большая их часть возникла на заре космической эпохи, планы прорабатывались как в СССР, так и в США с развитием программы «Аполлон». В последние годы стало поступать больше предложений вернуться на Луну к 2020-м и вновь пробудился интерес к созданию постоянного поселения. Тем не менее есть несколько научных предложений, которые появились еще до 20 века.

К примеру, в 1638 году епископ Джон Уилкис - английский священник, естествоиспытатель, член Лондонского королевского общества - написал «Рассуждение на тему нового мира и другой планеты», в котором предсказал появление колонии людей на Луне. Легендарный русский инженер, ракетостроитель, ученый и космонавт-теоретик Константин Эдуардович Циолковский предлагал при своей жизни (1857-1935) построить космический лифт и выдвигал предположение, что лунное поселение станет важным шагом в становлении человечеством покоряющего космоса вида.

К 1950-м и 60-м годам предложения стали расти как снежный ком - вместе с появлением программы «Аполлон» возникли и планы разместить астронавтов на Луне на постоянной основе. В 1954 году Артур Кларк предложил построить лунную базу из надувных модулей и накрыть их лунной пылью для изоляции.

Самое первое поселение по его плану потребует строительства зданий по типу иглу и надувной радиомачты, за чем последует строительство большого постоянного купола. Кларк предлагал очищать воздух фильтром на основе водорослей, ядерным реактором генерировать энергию и электромагнитными пушками запускать грузы и топливо для межпланетных судов в космосе.

В 1959 году Джон Райнхарт - директор Mining Research Laboratory в горной школе Колорадо - опубликовал предложение под названием «Базовые критерии для застройки Луны» в журнале Британского межпланетного сообщества. Его концепция «плавучей базы» включает полуцилиндры с полукуполами на обоих концах и микрометеороидный щит над базой. Основана такая идея была на том, что в те времена считалось, что на Луне океаны пыли глубиной в полтора километра в некоторых местах.

В то же время возникли планы по размещению военных баз на Луне. Среди них проект «Горизонт» - американский план построить форт на Луне к 1967 году. ВВС США также предложили проект «Люнекс» в 1961 году, который подразумевал создание подземной базы ВВС на Луне к 1968 году.

В 1962 году Джон Денике (менеджер программы перспективных программ NASA) и Стэнли Зан (технический директор по исследованиям лунных баз в космическом отделении компании Martin) опубликовали предложение построить лунную базу. Их идея включала строительство подповерхностной базы, расположенной в Море Спокойствия, которая будет полагаться на ядерные реакторы для энергии и системы фильтрации из водорослей.

В последние годы многие космические агентства набрасывают предложения по строительству колоний на Луне. В 2006 году Япония пообещала построить базу на Луне к 2030 году. Россия сделала подобное предложение в 2007 году, с планами на базу к 2027-2032 году. В 2007 году Джим Берке из Международного космического университета во Франции предложил создать лунный «ноев ковчег», в котором человеческая цивилизация могла бы пережить катастрофическое событие.

В августе 2014 года представители NASA встретились с лидерами отрасли, чтобы обсудить рентабельные способы построения лунной базы в полярных регионах к 2022 году. В 2015 году NASA изложила концепцию строительства лунного поселения, которое будет полагаться на роботов-работников (известных как «Трансформеров») и гелиостаты в процессе строительства. В 2016 году Йохан-Дитрих Вернер, новый глава ЕКА, предложил построить международную деревню на Луне в качестве преемника Международной космической станции.