Kvant. Теорема Гаусса. Применение теоремы Гаусса для расчета электрических полей Теорема гаусса принцип суперпозиции

ЛЕКЦИЯ № 7.ТЕОРЕМА ОСТРОГРАДСКОГО-ГАУСА ДЛЯ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ

ВВЕДЕНИЕ

На данной лекции мы продолжаем знакомиться с важнейшими характеристиками электростатического поля.

Введение понятия электрической индукции связано, прежде всего, с удобством описания электростатического поля и упрощением решения многих задач электростатики, главным образом, связанных с электростатическим полем в диэлектриках.

Дело в том, что еще одна величина, характеризующая электростатическое поле, – поток вектора индукции электростатического поля через любую поверхность определяется только свободными зарядами, а не всеми зарядами внутри, объема, ограниченного данной поверхностью.

При дальнейшем изучении электрических и магнитных полей мы еще не раз встретимся с аналогичными понятиями - индукция магнитного поля, поток магнитной индукции. Физический смысл этих понятий конечно разный, но математическая природа у них, совершенно эквивалентна.

1. ПОТОК ВЕКТОРА ИНДУКЦИИ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ

Как известно, напряженность электростатического поля зависит от свойств ср еды: в однородной изотропной среде напряженность поля обратно пропорциональна диэлектрической проницаемости .

Поэтому при переходе из одной среды в другую напряженность электростатического поля претерпевает скачкообразные изменения, создавая тем самым неудобства при расчете электростатических полей. Именно поэтому оказалось необходимым помимо вектора напряженности характеризовать поле еще одной векторной величиной – вектором электрического смещения или вектором индукции электростатического поля.

Определение. Электрическим смещением (электрической индукцией) называется векторная физическая величина равная произведению абсолютной диэлектрической проницаемости среды на напряженность электрического поля.

, (1)

где величина называется абсолютной диэлектрической проницаемостью среды.

Из формулы (1) следует, что вектор электрической индукции и вектор напряженности электростатического поля для изотропных сред, т.е. сред, свойства которых одинаковы по всем направлениям, всегда коллинеарны , так какабсолютная диэлектрическая проницаемость – величина строго положительная .

Найдем индукцию электрического поля точечного заряда.

Рис.1

(2)

Из формулы (2) видно, что, действительно, величина не зависит от свойств ср еды. Величина одинакова во всех средах (вода, керосин и т.д.).

Размерность электрической индукции в системе СИ:

Для графического изображения электростатического поля можно использовать линии электрического смещения .

Определение. Линии индукции электрического поля - это воображаемые линии, касательные к которым в каждой точке совпадают с вектором индукции электрического поля в данной точке.

Рассмотрим электрическое поле, характеризуемое вектором электрического смещения . Пусть в этом поле находится некоторая элементарная плоская поверхность площадью - (рис.2).

Рис.2

Построим к поверхности единичную нормаль , направим ее "наружу". Затем введем вектор ориентированной площадки , равный произведению площади этой элементарной поверхности на вектор единичной нормали:

Очевидно, что и , так как .

Определение Элементарным потоком вектора электрической индукции через площадку dS называется скалярная физическая величина, равная скалярному произведению вектора на векторориентированной площадки .

где - угол между вектором индукции и нормалью к поверхности , - проекция вектора электрической индукции на направление нормали .

Полный поток вектора через любую поверхность равен сумме элементарных потоков через элементарные поверхности, на которые можно разбить данную поверхность произвольной формы, то есть:

(4)

Размерность потока электрической индукциив системе СИ – кулон:

.

Замечание.

1) Для замкнутых поверхностей S поток вектора через эту поверхность равен:

()

За положительное направление нормали принимается направление внешней нормали, т.е. нормали, направленной наружу области, охватываемой поверхностью.

В данной части лекции мы изучили новые физические величины, характеризующие электрическое поле – индукцию электрического поля и поток вектора индукции электрического поля. Вектор электрическойиндукции является вспомогательной величиной, но, тем не менее, играет важную роль в процессе изучения электрического поля. Аналогичные величины будут введены при изучении магнитного поля.

2. ТЕОРЕМА ОСТРОГРАДСКОГО-ГАУССА

Вычислить напряженность поля, создаваемого системой зарядов, можно, как известно, с помощью принципа суперпозиции электростатических полей. Но это в большинстве случаев связано с громоздкими вычислениями.

Эти расчеты можно значительно упростить, если использовать основную теорему электростатики, теорему Остроградского-Гаусса, определяющую поток вектора электрической индукции через любую замкнутую поверхность.

Теорема Остроградского-Гаусса формулируется следующим образом:

«Поток индукции электростатического поля через любую замкнутую поверхность равен алгебраической сумме зарядов, заключенных внутри этой поверхности».

Математически теорема Остроградского-Гаусса для электростатических полей записывается следующим образом:

= (5)

Замечания.

1) Поверхность обязательно должна быть замкнутой, форма поверхности не играет роли и может быть любой.

2) Если поверхность S не охватывает заряды , то поток электрической индукции через нее равен нулю (рис.3):

Рис.3

3) Если алгебраическая сумма зарядов равна 0, то и поток равен нулю.

Значение теоремы Остроградского-Гаусса огромно – она позволяет найти индукцию и напряженность электрического поля сложной конфигурации.

Алгоритм (схема) использования теоремы О c троградского-Гаусса при расчете напряженности электростатического поля, создаваемого произвольной конфигурацией зарядов, состоит из следующих пунктов:

1) Выбираем точку, в которой будем определять и

2) Через эту точку проводим замкнутую поверхность , охватывающую все заряды;

3) Вычисляем поток электрической индукции через эту поверхность по определению, то есть по формуле:

4) Считаем этот же поток, но по теореме Остроградского – Гаусса:

(5)

5) Приравниваем полученные в третьем и четвертом пункте выражения и находим величину электрической индукции в данной точке:

6) Зная электрическую индукцию , легко определить величину напряженности электростатического поля в данной точке :

Как уже говорилось выше, теорема Остроградского-Гаусса является одной из основных теорем электростатики, с помощью которой легко вычислить напряженность и электрическую индукцию электростатических полей различной конфигурации. Алгоритм применения теоремы Остроградского-Гаусса должен знать наизусть каждый студент.

3. ПРИМЕНЕНИЕ ТЕОРЕМЫ ОСТРОГРАДСКОГО-ГАУССА ДЛЯ РАСЧЕТА НАПРЯЖЕННОСТИ ЭЛЕКТРОСТАТИЧСЕКИХ ПОЛЕЙ

Часто при решении задач удобно считать, что заряды распределены в заряженном теле непрерывно – вдоль некоторой линии (например, в случае заряженного тонкого стержня), поверхности (например, в случае заряженной пластины), или объёма. Соответственно пользуются понятиями линейной, поверхностной и объёмной плотностей зарядов.

Объёмная плотность электрических зарядов это скалярная физическая величина равная отношению заряда тела к объему тела, по которому распределен заряд:

Если зарядраспределен равномерно по объему тела, то объемная плотность заряда есть постоянная величина и ее легко рассчитать по формуле:

Размерность объемной плотности зарядов определяется из указанных формул и в интернациональной системе единиц равна: .

Поверхностная плотность электрических зарядов определяется аналогичным образом – это скалярная физическая величина равная отношению заряда всей поверхности к площади этой поверхности:

Поверхностная плотность зарядов измеряется в системе СИ в кулонах, деленных на квадратный метр:

Линейной плотностью электрических зарядов называется скалярная физическая величина равная отношению заряда протяженного тела к длине этого тела:

Размерность линейной плотности зарядов в интернациональной системе единиц – кулон, деленный на метр:

3.1. Напряженность электростатического поля, создаваемого равномерно заряженной сферической поверхностью.

Так как сфера заряжена равномерно, то поверхностная плотность заряда есть постоянная величина:

Пусть радиус сферы нам известен и равен . Тогда из формулы, приведенной выше, можно легко выразить общий заряд всей сферы:

Будем считать,что сфера заряжена положительно. Благодаря равномерному распределению заряда по поверхности сферы поле, создаваемое этими зарядами, обладает сферической симметрией. Поэтому линии электрической индукции (и силовые линии напряженности электростатического поля) направлены радиально от сферы (рис.4).

Рис.4

В соответствии с приведенным выше алгоритмом применения теоремы Остроградского-Гаусса выполним следующие действия:

1. Выберем произвольную точку А , расположенную на расстоянии от центра сферы и определим напряженность электростатического поля в этой точке;

2. Проведем через точку замкнутую поверхность . Учитывая сферическую симметрию задачи, удобно построить сферу радиусом с центром, точке, где находится центр заряженной сферы;

3. Считаем поток электрической индукции через поверхность по определению:

так как задача обладает сферической симметрией, то величина вектора электрической индукции в любой точке, находящейся на одинаковом расстоянии от центра заряженной сферы будет постоянна, поэтому мы имеем право вынести эту величину из-под знака интеграла. Кроме того, угол – угол между вектором электрической индукции и вектором нормали к сферической поверхности в любой точке сферическойповерхности, по которой проводится интегрирование, равен нулю.

Интеграл вида равен площади поверхности, по которой проводится интегрирование, поэтому окончательно можно записать:

;

4. Считаем этот же поток, но по теореме Остроградского – Гаусса:

5. Приравниваем полученные в пунктах 3 и 4 результаты:

Или ,

и находим величину электрической индукции в точке А :

Или

6. Определяем напряженность электростатического поля в точке :

или

Замечания:

1) Если точка А находится внутри заряженной сферы, то есть , тоэлектрическая индукция и напряженность электростатического поля в такой точке тождественно равны нулю и так как внутри заряженной сферы зарядов нет и поток электрической индукции через любую замкнутую поверхность, расположенную внутри заряженной сферы будет равен нулю . Другими словами – внутри заряженной сферы электрическое пол отсутствует.

2) Если точка А находится на поверхности заряженной сферы, то есть , то электрическая индукция и напряженность электрического поля на поверхности заряженной сферы соответственно равны:

Или

Или

График зависимости напряженности электростатического поля от расстояния до центра сферы (Рис.5):

Рис. 5

3.2. Напряженность поля равномерно заряженной бесконечной плоскости

Пусть имеется равномерно заряженная бесконечная плоскость с постоянной поверхностной плотностью заряда (рис.6).

Рис. 6

Будем считать плоскость бесконечной, если расстояние от плоскости до точки, где определяется , много меньше линейных размеров плоскости. Линии электрического смещения , так же как и силовые линии вектора в этом случае направлены перпендикулярно плоскости и идут симметрично в обе стороны

Будем использовать теорему Остроградского-Гаусса по известному алгоритму:

1. Выберем точку на расстоянии от плоскости.

2. Проведём через эту точку замкнутую поверхность в виде цилиндра, ось которого перпендикулярна заряженной поверхности. Точка лежит на основании цилиндра.

3. Вычислим поток индукции через построенную цилиндрическую поверхность по определению.

,

где – поток индукции через боковую поверхность цилиндра, – поток индукции через основание цилиндра.

Поток индукции через боковую поверхность равен нулю, так как угол между нормалью к боковой поверхности и вектором индукции равен . Поток через основание цилиндра:

4. Вычислим поток индукции по теореме Остроградского–Гаусса.

,

где – электрический заряд, находящийся внутри построенной нами замкнутой поверхности – цилиндра.

5. Приравняем результаты, полученные в пунктах 3 и 4, и найдём :

, отсюда

6. Вычислим напряженность электрического поля, создаваемого равномерно заряженной бесконечной плоскостью:

.

Рис. 7

Таким образом, индукция и напряженность поля равномерно заряженной плоскости не зависят от расстояния до плоскости и постоянны в любой точке поля: поле заряженной поверхности однородно.

Для отрицательно заряженной поверхности результат будет таким же, только направление векторов и изменится на обратное. График зависимости для такого поля показан на рис. 7.

Из этих формул видно, что электрическое поле бесконечной равномерно заряженной плоскости является однородным и не зависит от расстояния.

Используя принцип суперпозиций для электростатического поля, легко можно получить выражения для напряженности и электрической индукции электрического поля плоского конденсатора:

Заключение

Теорема Остроградского-Гаусса была выведена математически для векторного поля любой природы русским математиком М.В. Остроградским, а затем независимо от него Гаусс получил эту теорему применительно к электростатическому полю.

При доказательстве этой теоремы Гаусс опирался на закон Кулона и поэтому теорема Остроградского-Гаусса для электростатического поля есть следствие закона Кулона.

По своей сути теорема Гаусса математически выражает тот факт, что именно электрические заряды и есть источники электростатического поля, поэтому теорема Гаусса является основной теоремой электростатики.

4. МЕТОДИЧЕСКИЕ УКАЗАНИЯ И ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

ЗАДАЧА № 1. Двум изолированным металлическим концентрически расположенным сферам радиусами 5 сантиметров и 10 сантиметров сообщены соответственно заряды 10 нанокулон и 20 нанокулон . Пространство между сферами заполнено диэлектриком с диэлектрической проницаемостью . Определить напряженность электростатического поля и величину электрической индукции на расстоянии 2 сантиметра, 7 сантиметров и 12 сантиметров от центра обеих сфер.

ДАНО:


НАЙТИ:

РЕШЕНИЕ: данная задача решается с использованием теоремы Остроградского-Гаусса. Найдем электрическую индукцию и напряженность электростатического поля в точке, находящейся на расстоянии 2 сантиметра от общего центра данных сфер, для этого построим сферическую поверхность радиусом 2 сантиметра, центр которой совпадает с центром металлических сфер. После этого найдем поток электрической индукции через эту сферическую поверхность двумя способами – по теореме Остроградского-Гаусса и по определению потока электрической индукции . Первый способ дает тривиальное значение – поток электрической индукции должен быть равен нулю – , так как внутри сферической поверхности радиуса 2 сантиметра нет никакого электрического заряда. Второй способ дает следующий результат:

,

так как угол в любой точке сферической поверхности, через которую мы ищем поток электрической индукции. Кроме того, здесь мы учли, что интеграл по замкнутой поверхности равен площади сферической поверхности радиусом 2 сантиметра.

Приравняем два полученных результата: . Отсюда следует, что электрическая индукция равна нулю на расстоянии 2 сантиметра от центра металлических сфер и вообще в любой точке, находящейся внутри обеих сфер .Найдем теперь напряженность электростатического поля. Для этого используем определение электрической индукции . Из этого равенства следует, что . Таким образом, напряженность электростатического поля так же будет равна нулю на расстоянии 2 сантиметра от центра сфер и в любой точке внутри металлических заряженных сфер .

Перейдем к точке, находящейся между заряженными металлическими сферами на расстоянии 7 сантиметров от их общего центра. Будем действовать по тому же алгоритму. Сначала проведем сферическую поверхность радиуса 7 сантиметров, центр которой совпадает с центром металлических сфер. Затем посчитаем поток электрической индукции через эту поверхность двумя способами. Из теоремы Остроградского-Гаусса следует, что . Использование определения потока электрической индукции дает другой результат:

.

Здесь мы учли те же соображения, что были использованы в первом случае:

и

Приравняв эти выражения, получим:

.

Таким образом, электрическая индукция в точке, находящейся между заряженными сферами на расстоянии 7 сантиметров от их общего центра, зависит только от заряда внутренней сферы , внешняя сфера никак не влияет на электрическое поле, которое существует внутри нее.

Напряженность электростатического поля в интересующей нас точке будет равна

,

где – диэлектрическая проницаемость вещества, заполняющего пространство между заряженными сферами.

Проверим размерность полученных рабочих формул:

и

Размерность соответствует действительности, поэтому можно приступать к вычислению конечного результата:

,

Переходим к третьему этапу задачи. Для того чтобы найти значение электрической индукции и напряженности электростатического поля вне обеих заряженных сфер в точке, находящейся на расстоянии 12 сантиметров от их общего центра, проведем сферическую поверхность радиусом 12 сантиметров, центр которой совпадает с центром заряженных сфер.

Определим поток электрической индукции через эту поверхность двумя способами. Теорема Остроградского-Гаусса дает следующий результат:

Определение потока электрической индукции приводит к другому результату:

Левые части этих двух равенств одинаковы, значит, правые части этих равенств должны быть равны между собой, то есть: .

Выразим искомые величины:

и

Таким образом, в создании электрического поля вне заряженных сфер участвуют обе сферы. Так как пространство, окружающее внешнюю заряженную сферу, ничем не заполнено (является вакуумом), то .

Размерность этих формул можно не проверять, так как эта операция уже была проведена выше.

,

Знак минус дает нам информацию о направлении вектора электрической индукции и вектора напряженности электростатического поля в точке, находящейся на расстоянии 12 сантиметров от центра заряженных сфер. Действительно, в любой точке, лежащей вне заряженных сфер, вектор индукции и вектор напряженности электростатического поля будет направлен радиально к внешней заряженной сфере.

ЗАДАЧА № 2. Две бесконечно протяженные равномерно заряженные пластины находятся на некотором расстоянии друг от друга. Напряженность электростатического поля между пластинами 3000 вольт на метр, а вне пластин – 1000 вольт на метр. Найти поверхностную плотность заряда на каждой пластине.

ДАНО:

НАЙТИ:

РЕШЕНИЕ: при решении данной задачи мы воспользуемся результатами применения теоремы Остроградского-Гаусса для расчета напряженности и электрической индукции электростатического поля, создаваемой бесконечной равномерно заряженной плоскостью. Оказывается электростатическое поле, существующее около такой плоскости, является по своему характеру однородным, силовые линии такого электростатического поля направлены перпендикулярно плоскости. Если заряд на плоскости положительный, то силовые линии направлены от плоскости в обе стороны, если же заряд на плоскости отрицательный, то силовые линии направлены по обе стороны к плоскости. Величина напряженности в любой точке пространства около бесконечной равномерно заряженной плоскости равна .

Тот факт, что напряженность электростатического поля между пластинами больше, чем напряженность поля вне пластин говорит о том, что пластины заряжены разноименными зарядами – одна положительно, другая– отрицательно. Так как вне пластин вектора направлены в противоположные стороны , а между пластинами – в одну сторону, то есть .

Рис. 2

Если пластины зарядить одноименными зарядами, допустим положительно, будет, наоборот – между пластинами напряженность электростатического поля будет меньше, чем напряженность вне пластин, так как

ЗАДАЧА № 3. С какой силой действует электрическое поле плоского конденсатора на находящийся в нем электрический заряд 1 нанокулон ? Найти силу взаимодействия пластин конденсатора. Поверхностная плотность заряда на обкладках конденсатора равна 0,1 нанокулон на квадратный метр, а площадь пластин конденсатора равна 100 квадратных сантиметра.

ДАНО:

НАЙТИ:

РЕШЕНИЕ: электростатическое поле внутри плоского конденсатора складывается из электрического поля, создаваемого положительно заряженной пластиной и отрицательно заряженной пластиной. Напряженность результирующего поля будет равна векторной сумме напряженностей электрического поля, создаваемого одной и второй пластиной:

Величина напряженности бесконечной равномерно заряженной пластины может быть найдена с помощью теоремы Остроградского-Гаусса. Как известно, ее величина равна:

Суммируя все вышесказанное, можно найти напряженность электростатического поля внутри плоского конденсатора :

Этот результат говорит нам о том, что электрическое поле внутри плоского конденсатора является однородным.

Если поместить внутрь плоского конденсатора заряженную частицу, то она будет находиться в электростатическом поле, которое будет действовать на нее с определенной силой:

Проверим размерность полученной рабочей формулы:


Размерность правильная, так как сила действительно измеряется в ньютонах.

Математические вычисления дают следующий результат:

Силу взаимодействия, а именно силу притяжения пластин плоского конденсатора, можно найти следующим образом: рассмотрим одну заряженную пластину конденсатора, находящуюся в электростатическом поле, создаваемом другой заряженной пластиной. Величина заряда всей пластины конденсатора равна , где – площадь одной пластины плоского конденсатора. Напряженность электростатического поля, в котором находится эта пластина конденсатора, равна . Следовательно, сила, которая будет действовать на одну пластину конденсатора со стороны электростатического поля, создаваемого другой пластиной, будет описываться следующей формулой:

Итак, мы ответили на второй вопрос задачи – нашли силу взаимодействия (силу, с которой притягиваются) пластины плоского конденсатора.

Проверим размерность этой формулы:


Размерность соответствует действительности, приступим к математическим вычислениям:

Как было сказано выше, силовые линии условились проводить с такой густотой, чтобы количество линий, пронизывающих единицу поверхности, перпендикулярной к линиям площадки, было бы равно модулю вектора . Тогда по картине линий напряженности можно судить не только о направлении, но и величине вектора в различных точках пространства.

Рассмотрим силовые линии неподвижного положительного точечного заряда. Они представляют собой радиальные прямые, выходящие из заряда и заканчивающиеся на бесконечности. Проведем N таких линий. Тогда на расстоянии r от заряда число силовых линий, пересекающих единицу поверхности сферы радиуса r , будет равно . Эта величина пропорциональна напряженности поля точечного заряда на расстоянии r. Число N всегда можно выбрать таким, чтобы выполнялось равенство

откуда . Поскольку силовые линии непрерывны, то такое же число силовых линий пересекает замкнутую поверхность любой формы, охватывающую заряд q. В зависимости от знака заряда силовые линии либо входят в эту замкнутую поверхность, либо выходят наружу. Если число выходящих линий считать положительным, а входящих – отрицательным, то можно опустить знак модуля и записать:

. (1.4)

Поток вектора напряженности. Поместим в электрическое поле элементарную площадку, имеющую площадь . Площадка должна быть настолько малой, чтобы напряженность электрического поля во всех ее точках можно было считать одинаковой. Проведем нормаль к площадке (рис. 1.17). Направление этой нормали выбирается произвольно. Нормаль составляет угол с вектором . Потоком вектора напряженности электрического поля через выделенную поверхность называется произведение площади поверхности на проекцию вектора напряженности электрического поля на нормаль к площадке:

где – проекция вектора на нормаль к площадке .

Поскольку число силовых линий, пронизывающих единичную площадку, равно модулю вектора напряженности в окрестности выделенной площадки, то поток вектора напряженности через поверхность пропорционален числу силовых линий, пересекающих эту поверхность. Поэтому, в общем случае, наглядно поток вектора напряженности поля через площадку можно интерпретировать как величину, равную числу силовых линий, пронизывающих эту площадку:

. (1.5)

Заметим, что выбор направления нормали условен, ее можно направить и в другую сторону. Следовательно, поток – величина алгебраическая: знак потока зависит не только от конфигурации поля, но и от взаимной ориентации вектора нормали и вектора напряженности. Если эти два вектора образуют острый угол, поток положителен, если тупой – отрицателен. В случае замкнутой поверхности принято нормаль брать наружу области, охватываемой этой поверхностью, то есть выбирать внешнюю нормаль.

Если поле неоднородно и поверхность произвольна, то поток определяется так. Всю поверхность надо разбить на малые элементы площадью , вычислить потоки напряженности через каждый из этих элементов, а потом просуммировать потоки через все элементы:

Таким образом, напряженность поля характеризует электрическое поле в точке пространства. Поток напряженности зависит не от значения напряженности поля в данной точке, а от распределения поля по поверхности той или иной площади.

Силовые линии электрического поля могут начинаться только на положительных зарядах и заканчиваться на отрицательных. Они не могут начинаться или обрываться в пространстве. Поэтому, если внутри некоторого замкнутого объема нет электрического заряда, то полное число линий, входящих в данный объем и выходящих из него, должно равняться нулю. Если из объема выходит больше линий, чем входит в него, то внутри объема находится положительный заряд; если входит линий больше, чем выходит, то внутри должен быть отрицательный заряд. При равенстве полного заряда внутри объема нулю или при отсутствии в нем электрического заряда линии поля пронизывают его насквозь, и полный поток равен нулю.

Эти простые соображения не зависят от того, как электрический заряд распределен внутри объема. Он может находиться в центре объема или вблизи поверхности, ограничивающей объем. В объеме может находиться несколько положительных и отрицательных зарядов, распределенных внутри объема любым способом. Только суммарный заряд определяет полное число входящих или выходящих линий напряженности.

Как видно из (1.4) и (1.5), поток вектора напряженности электрического поля через произвольную замкнутую поверхность, охватывающую заряд q, равен . Если внутри поверхности находится n зарядов, то, согласно принципу суперпозиции полей, полный поток будет складываться из потоков напряженностей полей всех зарядов и будет равен , где под в этом случае подразумевается алгебраическая сумма всех зарядов, охватываемых замкнутой поверхностью.

Теорема Гаусса. Гаусс первым обнаружил тот простой факт, что поток вектора напряженности электрического поля через произвольную замкнутую поверхность должен быть связан с полным зарядом, находящимся внутри этого объема:

Гаусс Карл Фридрих (1777–1855)

Великий немецкий математик, физик и астроном, создатель абсолютной системы единиц в физике. Разработал теорию электростатического потенциала и доказал важнейшую теорему электростатики (теорема Гаусса). Создал теорию построения изображений в сложных оптических системах. Одним из первых пришел к мысли о возможности существования неевклидовой геометрии. Кроме того, Гаусс внес выдающийся вклад практически во все разделы математики.

Последнее соотношение и представляет собой теорему Гаусса для электрического поля:поток вектора напряженности через произвольную замкнутую поверхность пропорционален алгебраической сумме зарядов, расположенных внутри этой поверхности.Коэффициент пропорциональности зависит от выбора системы единиц.

Следует отметить, что теорема Гаусса получается как следствие закона Кулона и принципа суперпозиции. Если бы напряженность электрического поля изменялась бы не обратно пропорционально квадрату расстояния, то теорема оказалась бы несправедливой. Поэтому теорема Гаусса применима к любым полям, в которых строго выполняется закон обратных квадратов и принцип суперпозиции, например, к гравитационному полю. В случае гравитационного поля роль зарядов, создающих поле, играют массы тел. Поток линий гравитационного поля через замкнутую поверхность пропорционален полной массе, заключенной внутри этой поверхности.

Напряженность поля заряженной плоскости. Применим теорему Гаусса для определения напряженности электрического поля бесконечной заряженной плоскости. Если плоскость бесконечна и заряжена равномерно, то есть поверхностная плотность заряда одинакова в любом ее месте, то линии напряженности электрического поля в любой точке перпендикулярны этой плоскости. Чтобы показать это, воспользуемся принципом суперпозиции для вектора напряженности. Выделим два элементарных участка на плоскости, которые можно считать точечными для точки А , в которой необходимо определить напряженность поля. Как видно из рис. 1.18, результирующий вектор напряженности будет направлен перпендикулярно плоскости. Поскольку плоскость можно разбить на бесконечное количество пар таких участков для любой точки наблюдения, то, очевидно, что силовые линии поля заряженной плоскости перпендикулярны к плоскости, и поле является однородным (рис. 1.19). Если бы это было не так, то при перемещении плоскости вдоль самой себя поле в каждой точке пространства менялось, но это противоречит симметрии заряженной системы (плоскость бесконечна). В случае положительно заряженной плоскости силовые линии начинаются на плоскости и заканчиваются на бесконечности, а для отрицательно заряженной плоскости силовые линии начинаются на бесконечности и входят в плоскость.

Рис. 1.18 Рис. 1.19

Для определения напряженности электрического поля бесконечной положительно заряженной плоскости мысленно выделим в пространстве цилиндр, ось которого перпендикулярна заряженной плоскости, а основания параллельны ей, и одно из оснований проходит через интересующую нас точку поля (рис. 1.19). Цилиндр вырезает из заряженной плоскости участок площадью , и такую же площадь имеют основания цилиндра, расположенные по разные стороны от плоскости.

Согласно теореме Гаусса поток вектора напряженности электрического поля через поверхность цилиндра связан с электрическим зарядом внутри цилиндра выражением:

.

Так как линии напряженности пересекают лишь основания цилиндра, поток через боковую поверхность цилиндра равен нулю. Поэтому поток вектора напряженности через цилиндрическую поверхность будет складываться только из потоков через основания цилиндра, следовательно,

Сравнивая два последних выражения для потока вектора напряженности, получим

Напряженность электрического поля между разноименно заряженными пластинами. Если размеры пластин значительно превосходят расстояние между ними, то электрическое поле каждой из пластин можно считать близким к полю бесконечной равномерно заряженной плоскости. Так как линии напряженности электрического поля разноименно заряженных пластин между пластинами направлены в одну сторону (рис. 1.20), то напряженность поля между пластинами равна

.

Во внешнем пространстве линии напряженности электрического поля разноименно заряженных пластин имеют противоположные направления, поэтому вне этих пластин результирующая напряженность электрического поля равна нулю. Полученное для напряженности выражение справедливо для больших заряженных пластин, когда напряженность определяется в точке, расположенной далеко от их краев.

Напряженность электрического поля равномерно заряженной тонкой проволоки бесконечной длины. Найдем зависимость напряженности электрического поля равномерно заряженной тонкой проволоки бесконечной длины от расстояния до оси проволоки, используя теорему Гаусса. Выделим участок проволоки конечной длины . Если линейная плотность заряда на проволоке , то заряд выделенного участка равен .

Электростатическое поле – это особый вид материи, с помощью которой происходит взаимодействие заряженных тел.

Закон Кулона :сила взаимодействия F между двумя неподвижными точечными зарядами q 1 и q 2 прямопропорциональна величинам этих зарядов и обратно пропорциональна квадрату расстояния r между ними:

Где (e 0 – электрическая постоянная);

e – диэлектрическая проницаемость среды, показывающая во сколько раз сила взаимодействия зарядов в данной среде меньше, чем в вакууме.

Элект­рические поля, которые создаются неподвижными электрическими зарядами, называ­ются электростатическими .

Напряженность электростатического поля в данной точке есть физическая величина , определяемая силой, действующей на пробный точечный положительный заряд q 0 , помещенный в эту точку поля, то есть:

Электростатическое поле может быть изображено графически с помощьюсиловых линий .Силовая линия - это такая линия, касательная в каждой точке к которой совпадает по направлению с вектором напряженности электростатическго поля в данной точке (рис. 1, 2).

Если поле создается точечным зарядом, то силовые линии – это радиальные прямые, выходящие из положительного заряда (рис. 2, а ), и входя­щие в отрицательный заряд (рис. 2, б ).

Рис. 1 Рис. 2

С помощью силовых линий можно характеризовать не только направление, но и величину напряженности электростатического поля, связывая ей с густотой силовых линий. Большей густоте силовых линий соответствует большая величина напряженности (рис. 1, 2). Количественно числу силовых линий, прони­зывающих единичную площадку, расположенную перпендикулярно силовым линиям, ставится в соответствие величина напряженности электростатического поля. В этом случае определенному заряду q , создающему поле, соответствует определенное число N силовых линий, выходящих (для ) из заряда или входящих (для ) в заряд, а именно: .

Поток вектора напряженности электростатического поля через произвольную площадку S характкризуется числом силовых линий, пронизывающих данную площадку S.

Если площадка S перпендикулярна силовым линиям (рис. 3), то поток Ф Е вектора напряженности через данную площадку S : .

Рис. 3 Рис. 4

Рис. 3
Если же площадка S расположена неперпендикулярно силовым линиям электро-статического поля (рис. 4), то поток вектора через данную площадку S :

,

где α – угол между векторами напряженности и нормали к площадке S .

Для того, чтобы найти поток Ф Е вектора напряженности через произвольную поверхность S , необходиморазбить эту поверхность на элементарные площадки dS (рис. 5),определить элементарный поток dФ Е через каждую площадку dS по формуле:

,

а затем все эти элементарные потоки dФ Е сложить, что приводит к интегрированию:

,

где α – угол между векторами напряженности и нормали к данной элементарной площадке dS .

Если ввести вектор (рис. 5) как вектор, равный по величине площади площадки dS и направленный по вектору нормали к площадке dS , то величина , где a – угол между векторами и может быть записана в виде скалярного произведения векторов и , то есть, как , а полученное соотношение для потока вектора примет вид:

.

Теорема Остроградского - Гаусса для электростатического поля.

Теорема Остроградского - Гаусса для электростатического поля связывает между собой величину потока Ф Е вектора напряженности электростатического поля в вакууме через произвольную замкнутую поверхность S с величинойзаряда q , заключенного внутри данной замкнутой поверхности S (рис. 6).

Рис. 6
Поскольку все силовые линии, выходящие из заряда (для ) или входящие в заряд (для ), пронизываютпроизвольную замкнутую поверхность S , охватывающую этот заряд (рис. 6), то величина потока Ф Е вектора через эту поверхность S будет определяться числом N силовых линий выходящих из заряда (для ) или входящих в заряд (для ):

.

Это соотношение есть теорема Остроградского-Гаусса для электростатического поля.

Таккак поток считается положитель­ным, если силовые линии выходят из поверхности S , и отрицательным для линий, входящих в поверхность S, то в случае, если внутри произвольной замкнутой поверхности S находится не один, а несколько (n ) разноименных зарялов, то теорема Остроградского - Гаусса для электростатического поля формулируется следующим образом:

поток вектора напряженности электростатического поля в вакууме через произ­вольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности зарядов, деленной на e 0 :

.

Тема 2. Работа сил электростатического поля. Потенциал

Если в электростатическом поле, создаваемом точечным зарядом q , перемещается другой пробный заряд q 0 из точки 1 в точку 2 вдоль произвольной траектории (рис. 7), то при этом совершается работа сил электростатического поля.

Элементарная работа dA силы на элементарном перемещении равна: .

Из рисунка 7 видно, что .

Тогда ().

Работа А при перемещении заряда q 0 вдоль траектории от точки 1 до точки 2 :

То есть работа при перемещении заряда из точки 1 в

точку 2 в электростатическом поле не зависит от траектории перемещения, а определяется только положениями начальной и конечной точек. Поэтому электростатическое поле точечного заряда является потенциальным .

Работа, совершаемая силами электростатического поля при перемещении заряда q 0 из точки 1 в точку 2 , выражается следующим образом:

,

где φ 1 и φ 2 потенциалы электростатического поля в точках 1 и 2 .

Потенциал электростатического поля определяется с точностью до произвольной аддитивной постоянной С , то есть для поля точечного заряда q :

.

Тогда , .

Разность потенциалов двух точек 1 и 2 в электростатическом поле определяется работой, совершаемой силами электростатического поля, при перемещении пробного точечного заряда q 0 из точки 1 в точку 2 :

.

Связь между напряженностью и потенциалом электростатического поля

Напряженность и потенциал φ электростатического поля связаны между собой следующим образом:

= – grad φ

или , где

– единичные векторы координатных осей Ох , Оy , Оz , соответственно.

Знак минус в приведенной формуле означает, что вектор напряженности электростатического поля направлен в сторону максимального убывания потенциала j .

Для графического изображения распределения потенциала электростатического поля используютсяэквипотенциальные поверхности, то естьповерхности, во всех точках которых потенциал j имеет одно и то же значение.

Например, для поля, созданного точечным зарядом q , потенциал j определяется выражением: , а эквипотенциальными поверхностями являются кон­центрические сферы (рис. 8).

Из этого рисунка видно, что в случае точечного заряда силовые линии поля (штриховые линии на рисунке) нормальны (перпендикулярны) к эквипотенциальным поверхностям (сплошные линии на рисунке).

Это свойство нормального взаимного расположения силовых линий и эквипотенциальных поверхностей электростатического поля является общим для любых случаев электростатического поля.

Таким образом, зная расположение силовый линий электростатического поля, можно построить эквипотенциальные поверхности этого электростатического поля и, наоборот, по известному расположению эквипотенциальных поверхностей электростатического поля можно построить силовые линии электростатического поля.

Магнитное поле

Тема 3. Магнитное поле. Закон Био-Савара-Лапласа

Электрический ток создает поле, действующее на магнитную стрелку. Стрелка ориентируется по касательной к окружности, лежащей в плоскости, перпендикуляной к проводнику с током (рис. 9).

Основной характеристикой магнитного поля является вектор индукция . Принято, что вектор индукция магнитного поля направлен в сторону север-ного полюса магнитной стрелки, помещенной в данную точку поля (рис. 9).

По аналогии с электрическим полем, магнитное поле также может быть изображено графически с помощью силовых линий (линий индукции магнитного поля ).

Силовая линия – это такая линия, касательная к которой в каждой точке совпадает по направлению с вектором индукции магнитного поля. Силовые линии магнитного поля, в отличие от силовых линий электростатического поля, являются замкнутыми и охватывают проводники с током. Направление силовых линий задается правилом правого винта (правилом буравчика): головка винта, ввинчиваемого по направлению тока, враща­ется в направлении линий Рис. 9

магнитной индукции (рис. 9).

Для нескольких источников магнитного поля согласно принципу суперпозиции магнитных полей индукция результирующего магнитного поля равна векторной сумме индукций всех отдельных магнитных полей:

Вектор индукции магнитного поля, создаваемого проводником с током , можно определить с помощью закона Био-Савара-Лапласа. При этомнеобходимо учесть то, что закон Био-Савара-Лапласа позволяет найти модуль и направление лишьвектора индукции магнитного поля, создаваемого элементом проводника с током . Поэтому для определения вектора индукции магнитного поля, создаваемого проводником с током , необходимо первоначально разбить этот проводник на элементы проводника , для каждого элемента с помощью закона Био-Савара-Лапласа найти вектор индукции , а затем, используя принцип суперпозиции магнитных полей, сложить векторно все найденные вектора индукции .

Когда зарядов много, при расчётах полей возникают некоторые трудности.

Преодолеть их помогает теорема Гаусса. Суть теоремы Гаусса сводится к следующему: если произвольное количество зарядов мысленно окружить замкнутой поверхностью S, то поток напряжённости электрического поля через элементарную площадку dS можно записать как dФ = Есоsα۰dS где α - угол между нормалью к плоскости и вектором напряжённости . (рис.12.7)

Полный же поток через всю поверхность будет равен сумме потоков от всех зарядов, произвольным образом распределённых внутри её и пропорционально величине этого заряда

(12.9)

Определим поток вектора напряжённости сквозь сферическую поверхность радиуса r, в центре которой расположен точечный заряд +q (рис.12.8). Линии напряжённости перпендикулярны поверхности сферы, α =0, следовательно соsα = 1. Тогда

Если поле образовано системой зарядов, то

Теорема Гаусса: поток вектора напряжённости электростатического поля в вакууме сквозь любую замкнутую поверхность равен алгебраической сумме зарядов, заключенных внутри этой поверхности, делённой на электрическую постоянную.

(12.10)

Если внутри сферы зарядов нет, то Ф = 0.

Теорема Гаусса позволяет сравнительно просто рассчитать электрические поля при симметрично распределённых зарядов.

Введём понятие о плотности распределенных зарядов.

    Линейная плотность обозначается τ и характеризует заряд q, приходящийся на единицу длины ℓ. В общем виде может быть рассчитана по формуле

(12.11)

При равномерном распределении зарядов линейная плотность равна

    Поверхностная плотность обозначается σ и характеризует заряд q, приходящийся на единицу площади S. В общем виде определяется по формуле

(12.12)

При равномерном распределении зарядов по поверхности поверхностная плотность равна

    Объёмная плотность обозначается ρ, характеризует заряд q, приходящийся на единицу объёма V. В общем виде определяется по формуле

(12.13)

При равномерном распределении зарядов она равна
.

Так как заряд q располагается на сфере равномерно, то

σ = const. Применим теорему Гаусса. Проведём сферу радиусом через точку А. Поток вектора напряжённости рис.12.9 сквозь сферическую поверхность радиуса равен соsα = 1, так как α = 0. По теореме Гаусса,
.

или

(12.14)

Из выражения (12.14) следует, что напряжённость поля вне заряженной сферы такая же, как напряжённость поля точечного заряда, помещённого в центре сферы. На поверхности сферы, т.е. r 1 = r 0 , напряжённость
.

Внутри сферы r 1 < r 0 (рис.12.9) напряжённость Е = 0, так как сфера радиусом r 2 внутри никаких зарядов не содержит и, по теореме Гаусса, поток вектора сквозь такую сферу равен нулю.

Цилиндр радиусом r 0 равномерно заряжен с поверхностной плотностью σ (рис.12.10). Определим напряжённость поля в произвольно выбранной точке А. Проведём через точку А воображаемую цилиндрическую поверхность радиусом R и длиной ℓ. Вследствие симметрии поток будет выходить только через боковые поверхности цилиндра, так как заряды на цилиндре радиуса r 0 распределены по его поверхности равномерно, т.е. линии напряжённости будут радиальными прямыми, перпендикулярными боковым поверхностям обоих цилиндров. Так как поток через основание цилиндров равен нулю (cos α = 0), а боковая поверхность цилиндра перпендикулярна силовым линиям (cos α = 1), то

или

(12.15)

Выразим величину Е через σ - поверхностную плотность. По определению,

следовательно,

Подставим значение q в формулу (12.15)

(12.16)

По определению линейной плотности,
, откуда
; подставляем это выражение в формулу (12.16):

(12.17)

т.е. напряжённость поля, создаваемого бесконечно длинным заряженным цилиндром, пропорциональна линейной плотности заряда и обратно пропорциональна расстоянию.

      Напряжённость поля, создаваемого бесконечной равномерно заряженной плоскостью

Определим напряжённость поля, создаваемого бесконечной равномерно заряженной плоскостью в точке А. Пусть поверхностная плотность заряда плоскости равна σ. В качестве замкнутой поверхности удобно выбрать цилиндр, ось которого перпендикулярна плоскости, а правое основание содержит точку А. Плоскость делит цилиндр пополам. Очевидно, что силовые линии перпендикулярны плоскости и параллельны боковой поверхности цилиндра, поэтому весь поток проходит только через основания цилиндра. На обоих основаниях напряжённость поля одинакова, т.к. точки А и В симметричны относительно плоскости. Тогда поток, через основания цилиндра равен

Согласно теореме Гаусса,

Так как
, то
, откуда

(12.18)

Таким образом, напряжённость поля бесконечной заряженной плоскости пропорциональна поверхностной плотности заряда и не зависит от расстояния до плоскости. Следовательно, поле плоскости является однородным.

      Напряжённость поля, создаваемого двумя разноименно равномерно заряженными параллельными плоскостями

Результирующее поле, создаваемое двумя плоскостями, определяется по принципу суперпозиции полей:
(рис.12.12). Поле, создаваемое каждой плоскостью, является однородным, напряжённости этих полей равны по модулю, но противоположны по направлению:
. По принципу суперпозиции напряжённость суммарного поля вне плоскости равна нулю:

Между плоскостями напряжённости полей имеют одинаковые направления, поэтому результирующая напряжённость равна

Таким образом, поле между двумя разноименно равномерно заряженными плоскостями однородно и его напряжённость в два раза больше, чем напряжённость поля, создаваемого одной плоскостью. Слева и справа от плоскостей поле отсутствует. Такой же вид имеет и поле конечных плоскостей, искажение появляется только вблизи их границ. С помощью полученной формулы можно рассчитать поле между обкладками плоского конденсатора.

Общая формулировка: Поток вектора напряжённости электрического поля через любую, произвольно выбранную замкнутую поверхность пропорционален заключённому внутри этой поверхности электрическому заряду.

В системе СГСЭ:

В системе СИ:

— поток вектора напряженности электрического поля через замкнутую поверхность .

— полный заряд, содержащийся в объеме, который ограничивает поверхность .

— электрическая постоянная.

Данное выражение представляет собой теорему Гаусса в интегральной форме.

В дифференциальной форме теорема Гаусса соответствует одному из уравнений Максвелла и выражается следующим образом

в системе СИ:

,

в системе СГСЭ:

Здесь — объёмная плотность заряда (в случае присутствия среды — суммарная плотность свободных и связанных зарядов), а — оператор набла.

Для теоремы Гаусса справедлив принцип суперпозиции, то есть поток вектора напряжённости через поверхность не зависит от распределения заряда внутри поверхности.

Физической основой теоремы Гаусса является закон Кулона или, иначе, теорема Гаусса является интегральной формулировкой закона Кулона.

Теорема Гаусса для электрической индукции (электрическое смещение).

Для поля в веществе электростатическая теорема Гаусса может быть записана иначе — через поток вектора электрического смещения (электрической индукции). При этом формулировка теоремы выглядит следующим образом: поток вектора электрического смещения через замкнутую поверхность пропорционален заключённому внутри этой поверхности свободному электрическому заряду:

Если же рассматривать теорему для напряжённости поля в веществе, то в качестве заряда Q необходимо брать сумму свободного заряда, находящегося внутри поверхности и поляризационного (индуцированного, связанного) заряда диэлектрика:

,

где ,
— вектор поляризации диэлектрика.

Теорема Гаусса для магнитной индукции

Поток вектора магнитной индукции через любую замкнутую поверхность равен нулю:

.

Это эквивалентно тому, что в природе не существует «магнитных зарядов» (монополей), которые создавали бы магнитное поле, как электрические заряды создают электрическое поле. Иными словами, теорема Гаусса для магнитной индукции показывает, что магнитное поле является вихревым.

Применение теоремы Гаусса

Для вычисления электромагнитных полей используются следующие величины:

Объёмная плотность заряда (см. выше).

Поверхностная плотность заряда

где dS — бесконечно малый участок поверхности.

Линейная плотность заряда

где dl — длина бесконечно малого отрезка.

Рассмотрим поле, создаваемое бесконечной однородной заряженной плоскостью. Пусть поверхностная плотность заряда плоскости одинакова и равна σ. Представим себе мысленно цилиндр с образующими, перпендикулярными к плоскости, и основанием ΔS, расположенным относительно плоскости симметрично. В силу симметрии . Поток вектора напряжённости равен . Применив теорему Гаусса, получим:


,

из которого

в системе СГСЭ

Важно отметить, что несмотря на свою универсальность и общность, теорема Гаусса в интегральной форме имеет сравнительно ограниченное применение в силу неудобства вычисления интеграла. Однако в случае симметричной задачи решение её становится гораздо более простым, чем с использованием принципа суперпозиции.