Тепловое излучение тел. Открыта сила притяжения за счет теплового излучения Раскаленное серое тело излучает мощность

Пропуская излучение какого-либо тела через прибор, осуществляющий его разложение в спектр, можно судить о присутствии в излучении волн той или иной длины, а также оценивать распределение энергии по участкам спектра. Такие спектры называют спектрами испускания. При этом оказывается, что пары и газы (особенно одноатомные) при их нагревании или при электрическом разряде дают (при низких давлениях, когда взаимодействие атомов практически незаметно) линейчатые спектры, состоящие из относительно узких «линий», т. е. узких частотных интервалов, где интенсивность излучения значительна. Так, водород дает в видимой части спектра пять линий, натрий - одну (желтую) линию. При использовании спектральной аппаратуры высокого разрешения у ряда линий обнаруживается сложная структура. При увеличении давления, когда сказывается взаимодействие атомов друг с другом, а также при сложном строении молекул получаются более широкие линии, переходящие в целые относительно широкие полосы сложного строения (полосатые спектры). Такие полосатые спектры, в частности, наблюдаются у жидкостей. Наконец, твердые тела при нагревании дают практически сплошные спектры, однако распределение интенсивности по спектру у разных тел различно.

Спектральный состав излучения зависит также от температуры тел. Чем выше температура, тем (при прочих равных условиях) больше преобладают высокие частоты. Так, по мере увеличения температуры спирали лампы накаливания, при изменений протекающего по ней тока цвет спирали меняется: сначала нить слабо светится красным светом, затем видимое излучение становится более интенсивным и коротковолновым - преобладает желто-зеленая часть спектра. Но, как это выяснится в дальнейшем, и в этом случае большая часть излучаемой энергии соответствует невидимому инфракрасному диапазону.

Если излучение со сплошным спектром пропустить через слой вещества, то возникает частичное поглощение, в результате чего на сплошном спектре излучения получаются линии с минимумом интенсивности. В видимой части спектра они по контрасту кажутся темными полосами (или линиями); такие спектры называют спектрами поглощения. Так, солнечный спектр, перерезанный системой тонких темных линий (линии Фраунгофера), является спектром поглощения; оно происходит в атмосфере Солнца.

Изучение спектров показывает, что с изменением температуры тела меняется не только испускание света, но и его поглощение. При этом было обнаружено, что хорошо излучающие тела обладают и большим поглощением (Прево), а поглощенные частоты совпадают сиспускаемыми (Кирхгоф). Здесь не принимаются во внимание явления, связанные с преобразованием частоты (люминесценция, эффект Комптона, комбинационное рассеяние), обычно играющие незначительную роль.

Особый интерес у физиков XIX в. вызывало излучение нагретых тел. Дело в том, что при электрическом разряде, при некоторых химических реакциях (хемилюминесценция), при обычной люминесценции требуется непрерывная затрата энергии, за счет которой и возникает излучение, т. е. процесс является неравновесным.

Излучение же нагретого тела при определенных условиях может быть равновесным, так как излучаемая энергия может поглощаться. В XIX в. термодинамика была разработана лишь для равновесных процессов; поэтому можно было надеяться на создание лишь теории излучения нагретого тела.

Итак, представим себе тело, имеющее внутри полость с зеркальными (т. е. полностью отражающими излучение любой частоты) стенками. Пусть в эту полость помещены два произвольных тела, дающих сплошной спектр излучения; их температура сначала может быть различной. Они будут обмениваться энергией излучения до тех пор, пока не установится равновесное состояние: энергия, поглощаемая в единицу времени элементом поверхности каждого тела, будет равна энергии, излучаемой тем же элементом. При этом вся полость заполнится излучением всевозможных частот. По мысли русского физика Б. Б. Голицына, этому излучению следует приписать ту же температуру, какая установится у излучающих тел после достижения равновесного состояния.

Для количественного описания введем функцию распределения е (ν,Т), называемую лучеиспускательной способностью тела. Произведение edν , где - бесконечно малый интервал частот (около частоты ν), дает энергию, испускаемую единицей поверхности тела в единицу времени в частотном интервале (ν, ν+).

Далее назовем поглощательной способностью тела функцию а(ν,Т ), определяющую отношение энергии, поглощаемой элементом поверхности тела, к падающей на него энергии, заключенной в частотном интервале (v, ν + ).

Таким же образом можно определить и отражательную способность r (ν , Т) как отношение отражаемой энергии в интервале частот (ν, v+dν) к энергии падающей.

Идеализированные зеркальные стенки обладают отражательной способностью, равной единице во всей области частот - от самых малых до произвольно больших.

Допустим, что наступило состояние равновесия, при этом первое тело в единицу времени излучает с каждой единицы поверхности мощность

Если на эту единичную поверхность приходит из полости излучение, Описываемое функцией Ɛ(v, T ) dv , то часть энергии, определяемая произведением a 1 (v,T ) Ɛ(v , T ) dv , будет поглощена, остальное излучение отразится. В то же время единицей поверхности второго тела излучается мощность e 2 (v , T ) dv , а поглощается a 2 (v , T )Ɛ(v , T ) dv .

Отсюда следует, что при равновесии выполняется условие:

Его можно представить в виде

(11.1)

Эта запись подчеркивает, что отношение лучеиспускательной способности любого тела к его поглощательной способности при данной температуре в некотором узком интервале частот есть величина постоянная для всех тел. Эта постоянная величина равна лучеиспускательной способности так называемого черного тела (т. е. тела с поглощательной способностью, равной единице во всей мыслимой области частот).

Этим черным телом оказывается рассматриваемая нами полость. Поэтому, если сделать в стенке тела с полостью весьма малое отверстие, заметно не нарушающее теплового равновесия, то слабый поток излучения из этого отверстия будет характерен для излучения черного тела. В то же время ясно, что излучение, попадающее через такое отверстие внутрь полости, имеет ничтожно малую вероятность выйти обратно, т. е. полость обладает-полным поглощением, как это и должно быть у черного тела. Можно показать, что наши рассуждения сохраняют справедливость и при замене зеркальных стенок стенками с меньшей отражательной способностью; вместо двух тел можно взять несколько или одно или просто рассматривать излучение стенок самой полости (если они не зеркальны). Закон, выражаемый формулой (11.1), называют законом Кирхгофа. Из закона Кирхгофа следует, что если бы была известна функция Ɛ(v, Т), характеризующая излучение черного тела, то излучение любого другого тела можно было бы определить, измерив его поглощательную способность.

Отметим, что небольшое отверстие в стенке, например, муфельной печи при комнатной температуре кажется черным, так как, поглощая все попадающее-в полость излучение, полость почти не излучает, будучи холодной. Но при нагреве стенок печи отверстие кажется яркосветящимся, так как поток «черного» излучения, выходящий из него при высокой температуре (900 К и выше), достаточно интенсивен. По мере роста температуры интенсивность растет и красное вначале излучение воспринимается желтым, а затем - белым.

Если в полости имеется, например, чашка из белого фарфора с темным узором, то внутри горячей печи узор не будет заметен, так как его собственное излучение вместе с отраженным совпадает по составу с излучением, заполняющим полость. Если быстро вынести чашку наружу, в светлую комнату, то сначала темный узор светится ярче белого фона. После охлаждения, когда собственное излучение чашки становится исчезающе малым, в свете, заполняющем комнату, снова получается темный узор на белом фоне.

Тепловое излучение тел

Основные вопросы темы:

1. Характеристики теплового излучения.

2. Законы теплового излучения (закон Кирхгофа, закон Стефана-Больцмана, закон Вина); формула Планка.

3. Физические основы термографии (тепловидения).

4. Теплоотдача организма.

Любое тело при температурах выше абсолютного нуля (0 К) является источником электромагнитного излучения, которое называют тепловым излучением. Оно возникает за счет внутренней энергии тела.

Диапазон длин электромагнитных волн (спектральный диапазон), излучаемых нагретым телом, очень широк. В теории теплового излучения часто считают, что здесь длина волны меняется от 0 до ¥.

Распределение энергии теплового излучения тела по длинам волн зависит о его температуры. При комнатной температуре почти вся энергия сосредоточена в инфракрасной области шкалы электромагнитных волн. При высокой температуре ( 1000°C) значительная часть энергии испускается и в видимом диапазоне .

Характеристики теплового излучения

1. Поток (мощность) излучения Ф (иногда обозначается буквой Р ) – энергия, излучаемая за 1 сек со всей поверхности нагретого тела по всем направлениям в пространстве и во всем спектральном диапазоне:

, в СИ . (1)

2. Энергетическая светимость R – энергия, излучаемая за 1 сек с 1 м 2 поверхности тела по всем направлениям пространстве и во всем спектральном диапазоне. Если S – площадь поверхности тела, то

, , в СИ , (2)

Очевидно, что .

3. Спектральная плотность энергетической светимости r λ - энергия, излучаемая за 1 сек с 1м 2 поверхности тела по всем направлениям на длине волны λ в единичном спектральном диапазоне , →

Рис. 1

Зависимость r l от l называют спектром теплового излучения тела при данной температуре (при Т = const). Спектр дает распределение излучаемой телом энергии по длинам волн. Он показан на рис. 1.

Можно показать, что энергетическая светимость R равна площади фигуры, ограниченной спектром и осью (рис. 1).

4. Способность нагретого тела поглощать энергию внешнего излучения определяется монохроматическим коэффициентом поглощения а l ,

т.е. а l равноотношению потока излучения с длиной волны l, поглощенного телом, к потоку излучения той же длины волны, упавшему на тело. Из (3.) следует, что а l – величина безразмерная и .

По типу зависимости а от l все тела делятся на 3 группы:

1). Абсолютно черные тела :

а = 1 на всех длинах волн при любых температурах (рис. 3, 1 ), т.е. абсолютно черное тело полностью поглощает все падающее на него излучение. “Абсолютно черных” тел в природе нет, моделью такого тела может являться замкнутая непрозрачная полость с маленьким отверстием (рис. 2). Луч, попавший в это отверстие, после многократных отражений от стенок будет практически полностью поглощен.

К абсолютно черному телу близко солнце, его Т = 6000 К.

2). Серые тела : их коэффициент поглощения а < 1 и одинаков на всех длинах волн при любых температурах (рис. 3, 2 ). Например, серым телом можно считать тело человека в задачах теплообмена с окружающей средой.

3). Все остальные тела :

для них коэффициент поглощения а < 1 и зависит от длины волны, т.е. а l = f (l ), эта зависимость представляет собой спектр поглощения тела (рис. 3 , 3 ).

Итак, что такое тепловое излучение?

Тепловое излучение - это электромагнитное излучение, которое возникает за счет энергии вращательного и колебательного движения атомов и молекул в составе вещества. Тепловое излучение характерно для всех тел, которые имеют температуру, превышающую температуру абсолютного нуля.

Тепловое излучение тела человека относится к инфракрасному диапазону электромагнитных волн. Впервые такое излучение было открыто английским астрономом Вильямом Гершелем. В 1865 английский физик Дж. Максвелл доказал, что ИК - излучение имеет электромагнитную природу и представляет собой волны длиной от 760нм до 1-2мм . Чаще всего весь диапазон ИК - излучения делят на области: ближнюю (750нм -2.500нм ), среднюю (2.500нм - 50.000нм ) и дальнюю (50.000нм -2.000.000нм ).

Рассмотрим случай, когда тело А расположено в полости Б, которая ограничена идеальной отражающей (непроницаемой для излучения) оболочкой С (рис.1). В результате многократного отражения от внутренней поверхности оболочки излучение будет сохраняться в пределах зеркальной полости и частично поглощаться телом А. При таких условиях система полость Б - тело А не будет терять энергию, а будет лишь происходить непрерывный обмен энергией между телом А и излучением, которое заполняет полость Б.

Рис.1 . Многократное отражение тепловых волн от зеркальных стенок полости Б

Если распределение энергии остается неизменным для каждой длины волны, то состояние такой системы будет равновесным, а излучение также будет равновесным. Единственным видом равновесного излучения является тепловое. Если по какой-то причине равновесие между излучением и телом сместится, то начинают протекать такие термодинамические процессы, которые вернут систему в состояние равновесия. Если тело А начинает излучать больше, чем поглощает, то тело начинает терять внутреннюю энергию и температура тела (как мера внутренней энергии) начнет падать, что уменьшит количество излучаемой энергии. Температура тела будет падать до тех пор, пока количество излучаемой энергии не станет равным количеству энергии, поглощаемой телом. Таким образом, наступит равновесное состояние.

Равновесное тепловое излучение имеет такие свойства: однородное (одинаковая плотность потока энергии во всех точках полости), изотропное (возможные направления распространения равновероятны), неполяризованное (направления и значения векторов напряженностей электрического и магнитного полей во всех точках полости изменяются хаотически).

Основными количественными характеристиками теплового излучения являются:

- энергетическая светимость - это количество энергии электромагнитного излучения во всем диапазоне длин волн теплового излучения, которое излучается телом во всех направлениях с единицы площади поверхности за единицу времени: R = E/(S·t), [Дж/(м 2 с)] = [Вт/м 2 ] Энергетическая светимость зависит от природы тела, температуры тела, состояния поверхности тела и длины волны излучения.

- спектральная плотность энергетической светимости - энергетическая светимость тела для данных длин волн (λ + dλ) при данной температуре (T + dT): R λ,T = f(λ, T).

Энергетическая светимость тела в пределах каких-то длин волн вычисляется интегрированием R λ,T = f(λ, T) для T = const:

- коэффициент поглощения - отношение поглощенной телом энергии к падающей энергии. Так, если на тело падает излучение потока dФ пад, то одна его часть отражается от поверхности тела - dФ отр, другая часть проходит в тело и частично превращается в теплоту dФ погл, а третья часть после нескольких внутренних отражений - проходит через тело наружу dФ пр: α = dФ погл /dФ пад.

Коэффициент поглощения α зависит от природы поглощающего тела, длины волны поглощаемого излучения, температуры и состояния поверхности тела.

- монохроматический коэффициент поглощения - коэффициент поглощения теплового излучения данной длины волны при заданной температуре: α λ,T = f(λ,T)

Среди тел есть такие тела, которые могут поглощать все тепловое излучение любых длин волн, которое падает на них. Такие идеально поглощающие тела называются абсолютно черными телами . Для них α =1.

Есть также серые тела, для которых α<1, но одинаковый для всех длин волн инфракрасного диапазона.

Моделью АЧТ является малое отверстие полости с теплонепроницаемой оболочкой. Диаметр отверстия составляет не более 0,1 диаметра полости. При постоянной температуре из отверстия излучается некоторая энергия, соответствующая энергетической светимости абсолютно черного тела. Но АЧТ - это идеализация. Но законы теплового излучения АЧТ помогают приблизиться к реальным закономерностям.

2. Законы теплового излучения

1. Закон Кирхгофа. Тепловое излучение является равновесным - сколько энергии излучается телом, столь ее им и поглощается. Для трех тел, находящихся в замкнутой полости можно записать:

Указанное соотношение будет верным и тогда, когда одно из тел будет АЧ:

Т.к. для АЧТ α λT .
Это закон Кирхгофа: отношение спектральной плотности энергетической светимости тела к его монохроматическому коэффициенту поглощения (при определенной температуре и для определенной длины волны) не зависит от природы тела и равно для всех тел спектральной плотности энергетической светимости при тех же самых температуре и длине волны.

Следствия из закона Кирхгофа:
1. Спектральная энергетическая светимость АЧТ является универсальной функцией длины волны и температуры тела.
2. Спектральная энергетическая светимость АЧТ наибольшая.
3. Спектральная энергетическая светимость произвольного тела равна произведению его коэффициента поглощения на спектральную энергетическую светимость абсолютно черного тела.
4. Любое тело при данной температуре излучает волны той же длины волны, которое оно излучает при данной температуре.

Систематическое изучение спектров ряда элементов позволило Кирхгофу и Бунзену установить однозначную связь между спектрами поглощения и излучения газов и индивидуальностью соответствующих атомов. Так был предложен спектральный анализ , с помощью которого можно выявить вещества, концентрация которых составляет 0,1нм.

Распределение спектральной плотности энергетической светимости для абсолютно черного тела, серого тела, произвольного тела. Последняя кривая имеет несколько максимумов и минимумов, что указывает на избирательность излучения и поглощения таких тел.

2. Закон Стефана-Больцмана.
В 1879 году австрийские ученые Йозеф Стефан (экспериментально для произвольного тела) и Людвиг Больцман (теоретически для АЧТ) установили, что общая энергетическая светимость во всем диапазоне длин волн пропорциональна четвертой степени абсолютной температуры тела:

3. Закон Вина.
Немецкий физик Вильгельм Вин в 1893 году сформулировал закон, который определяет положение максимума спектральной плотности энергетической светимости тела в спектре излучения АЧТ в зависимости от температуры. Согласно закону, длина волны λ max , на которую приходится максимум спектральной плотности энергетической светимости АЧТ, обратно пропорционален его абсолютной температуре Т: λ max = в/t, где в = 2,9*10 -3 м·К- постоянная Вина.

Таким образом, при увеличении температуры изменяется не только полная энергия излучения, но и сама форма кривой распределения спектральной плотности энергетической светимости. Максимум спектральной плотности при увеличении температуры смещается в сторону более коротких длин волн. Поэтому закон Вина называют законом смещения.

Закон Вина применяется в оптической пирометрии - метода определения температуры по спектру излучения сильно нагретых тел, которые отдалены от наблюдателя. Именно этим методом впервые была определена температура Солнца (для 470нм Т=6160К).

Представленные законы не позволяли теоретически найти уравнения распределения спектральной плотности энергетической светимости по длинам волн. Труды Релея и Джинса, в которых ученые исследовали спектральный состав излучения АЧТ на основе законов классической физики, привели к принципиальным трудностям, названных ультрафиолетовой катастрофой. В диапазоне УФ-волн энергетическая светимость АЧТ должна была достигать бесконечности, хотя в опытах она уменьшалась к нулю. Эти результаты противоречили закону сохранения энергии.

4. Теория Планка. Немецкий ученый в 1900 году выдвинул гипотезу о том, что тела излучают не непрерывно, а отдельными порциями - квантами. Энергия кванта пропорциональна частоте излучения: E = hν = h·c/λ , где h = 6,63*10 -34 Дж·с постоянная Планка.

Руководствуясь представлениями о квантовом излучении АЧТ, он получил уравнение для спектральной плотности энергетической светимости АЧТ:

Эта формула находится в соответствии с опытными данными во всем интервале длин волн при всех температурах.

Солнце - основной источник теплового излучения в природе. Солнечное излучение занимает широкий диапазон длин волн: от 0,1нм до 10м и более. 99% солнечной энергии приходится на диапазон от 280 до 6000нм . На единицу площади Земной поверхности приходится в горах от 800 до 1000 Вт/м 2 . До земной поверхности доходит одна двухмиллиардная часть тепла - 9,23 Дж/см 2 . На диапазон теплового излучения от 6000 до 500000нм приходится 0,4% энергии Солнца. В атмосфере Земли большая часть ИК-излучения поглощается молекулами воды, кислорода, азота, диоксида углерода. Радиодиапазон тоже большей частью поглощается атмосферой.

Количество энергии, которую приносят солнечные лучи за 1с на площадь в 1 кв.м, расположенную за пределами земной атмосферы на высоте 82 км перпендикулярную солнечным лучам называется солнечной постоянной. Она равна 1,4*10 3 Вт/м 2 .

Спектральное распределение нормальной плотности потока солнечного излучения совпадает с таким для АЧТ при температуре 6000 градусов. Поэтому Солнце относительно теплового излучения - АЧТ.

3. Излучение реальных тел и тела человека

Тепловое излучение с поверхности тела человека играет большую роль в теплоотдаче. Существуют такие способы теплоотдачи: теплопроводность (кондукция), конвекция, излучение, испарение. В зависимости от условий, в которых окажется человек, каждый из этих способов может иметь доминирующее значение (так, например, при очень высоких температурах среды ведущая роль принадлежит испарению, а в холодной воде - кондукции, причем температура воды 15 градусов является смертельной средой для обнаженного человека, и через 2-4 часа наступает обморок и смерть вследствие переохлаждения мозга). Доля излучения в общей теплоотдаче может составлять от 75 до 25%. В нормальных условиях около 50% при физиологическом покое.

Тепловое излучение, которое играет роль в жизни живых организмов делится на коротковолновую (от 0,3 до 3 мкм) и длинноволновую (от 5 до 100мкм ). Источником коротковолнового излучения служат Солнце и открытое пламя, а живые организмы являются исключительно реципиентами такого излучения. Длинноволновая радиация и излучается, и поглощается живыми организмами.

Величина коэффициента поглощения зависит от соотношения температур среды и тела, площади их взаимодействия, ориентации этих площадей, а для коротковолнового излучения - от цвета поверхности. Так у негров происходит отражение лишь 18% коротковолнового излучения, тогда как у людей белой расы около 40% (скорее всего, цвет кожи негров в эволюции не имел отношение к теплообмену). Для длинноволнового излучения коэффициент поглощения приближен к 1.

Расчет теплообмена излучением - очень трудная задача. Для реальных тел использовать закон Стефана-Больцмана нельзя, поскольку у них более сложная зависимость энергетической светимости от температуры. Оказывается, она зависит от температуры, природы тела, формы тела и состояния его поверхности. Со сменой температуры изменяется коэффициент σ и показатель степени температуры. Поверхность тела человека имеет сложную конфигурацию, человек носит одежду, которая изменяет излучение, на процесс влияет поза, в которой находится человек.

Для серого тела мощность излучения во всем диапазоне определяется по формуле: P = α с.т. σ·T 4 ·S Считая с определенными приближениями реальные тела (кожа человека, ткани одежды) близкими к серым телам, можно найти формулу для вычисления мощности излучения реальными телами при определенной температуре: P = α·σ·T 4 ·S В условиях разных температур излучающего тела и окружающей среды: P = α·σ·(T 1 4 - T 2 4)·S
Существуют особенности спектральной плотности энергетической светимости реальных тел: при 310К , что соответствует средней температуре тела человека, максимум теплового излучения приходится на 9700нм . Любое изменение температуры тела приводит к изменению мощности теплового излучения с поверхности тела (0,1 градус достаточно). Поэтому исследование участков кожи, через ЦНС связанных с определенными органами, способствует выявлению заболеваний, в результате которых температура изменяется довольно значительно (термография зон Захарьина-Геда ).

Интересен метод бесконтактного массажа биополем человека (Джуна Давиташвили). Мощность теплового излучения ладони 0,1Вт , а тепловая чувствительность кожи 0,0001 Вт/см 2 . Если действовать на вышеупомянутые зоны, можно рефлекторно стимулировать работу этих органов.

4. Биологическое и терапевтическое действие тепла и холода

Тело человека постоянно излучает и поглощает тепловое излучение. Этот процесс зависит от температур тела человека и окружающей среды. Максимум ИК-излучения тела человека приходится на 9300нм.

При маленьких и средних дозах облучения ИК-лучами усиливаются метаболические процессы и ускоряются ферментативные реакции, процессы регенерации и репарации.

В результате действия ИК-лучей и видимого излучения в тканях образуются БАВ (брадикинин, калидин, гистамин, ацетилхолин, в основном вазомоторные вещества, которые играют роль в осуществлении и регуляции местного кровотока).

В результате действия ИК-лучей в коже активируются терморецепторы, информация от которых поступает в гипоталамус, в результате чего расширяются сосуды кожи, увеличивается объем циркулирующей в них крови, усиливается потовыделение.

Глубина проникновения ИК-лучей зависит от длины волны, влажности кожи, наполнения ее кровью степени пигментации и т.д.

На коже человека под действием ИК-лучей возникает красная эритема.

Применяется в клинической практике для влияния на местную и общую гемодинамику, усиления потовыделения, расслабления мышц, снижения болевого ощущения, ускорения рассасывания гематом, инфильтратов и т.д.

В условиях гипертермии усиливается противоопухолевое действие лучевой терапии - терморадиотерапия.

Основные показания применения ИК-терапии: острые негнойные воспалительные процессы, ожоги и обморожения, хронические воспалительные процессы, язвы, контрактуры, спайки, травмы суставов, связок и мышц, миозиты, миалгии, невралгии. Основные противопоказания: опухоли, гнойные воспаления, кровотечения, недостаточность кровообращения.

Холод применяется для остановки кровотечений, обезболивания, лечения некоторых заболеваний кожи. Закаливание ведет к долголетию.

Под действием холода снижается частота сердечных сокращений, артериальное давление, угнетаются рефлекторные реакции.

В определенных дозах холод стимулирует заживление ожогов, гнойных ран, трофических язв, эрозий, коньюктивитов.

Криобиология - изучает процессы, которые происходят в клетках, тканях, органах и организме под действием низких, нефизиологических температур.

В медицине используются криотерапия и гипертермия . Криотерапия включает методы, основанные на дозированном охлаждении тканей, органов. Криохирургия (часть криотерапии) использует локальное замораживание тканей с целью их удаления (часть миндалины. Если вся - криотонзилоэктомия. Можно удалять опухоли, например, кожи, шейки матки и т.д.) Криоэкстракция, основанная на криоадгезии (прилипании влажных тел к замороженному скальпелю) - выделение из органа части.

При гипертермии можно некоторое время сохранить функции органов ин виво. Гипотермию с помощью наркоза используют для сохранения функции органов при отсутствии кровоснабжения, поскольку замедляется обмен веществ в тканях. Ткани становятся стойкими к гипоксии. Применяют холодовой наркоз.

Осуществляют действие тепла с помощью ламп накаливания (лампа Минина, солюкс, ванна светотепловая, лампа ИК-лучей) с использованием физических сред, имеющих высокую теплоемкость, плохую теплопроводность и хорошую теплосохранящую способность: грязи, парафин, озокерит, нафталин и т.д.

5. Физические основы термографии.Тепловизоры

Термография, или тепловидение - это метод функциональной диагностики, основанный на регистрации ИК-излучения тела человека.

Существует 2 разновидности термографии:

- контактная холестерическая термография : в методе используются оптические свойства холестерических жидких кристаллов (многокомпонентные смеси сложных эфиров и других производных холестерина). Такие вещества избирательно отражают разные длины волн, что дает возможным получать на пленках этих веществ изображения теплового поля поверхности тела человека. На пленку направляют поток белого света. Разные длины волн по-разному отражаются от пленки в зависимости от температуры поверхности, на которую нанесен холестерик.

Под действием температуры холестерики могут изменять цвет от красного до фиолетового. В результате формируется цветное изображение теплового поля тела человека, которое легко расшифровать, зная зависимость температура-цвет. Существуют холестерики, позволяющие фиксировать разницу температур 0,1 градус. Так, можно определить границы воспалительного процесса, очаги воспалительной инфильтрации на разных стадиях ее развития.

В онкологии термография позволяет выявить метастатические узлы диаметром 1,5-2мм в молочной железе, коже, щитовидной железе; в ортопедии и травматологии оценить кровоснабжение каждого сегмента конечности, например, перед ампутацией, опередить глубину ожога и т.д.; в кардиологии и ангиологии выявить нарушения нормального функционирования ССС, нарушения кровообращения при вибрационной болезни, воспалении и закупорке сосудов; расширение вен и т.д.; в нейрохирургии определить расположение очагов повреждения проводимости нерва, подтвердить место нейропаралича, вызванного апоплексией; в акушерстве и гинекологии определить беременность, локализацию детского места; диагностировать широкий спектр воспалительных процессов.

- Телетермография - базируется на превращение ИК-излучения тела человека в электрические сигналы, которые регистрируются на экране тепловизора или другом записывающем устройстве. Метод бесконтактный.

ИК-излучение воспринимается системой зеркал, после чего ИК-лучи направляются на приемник ИК-волн, основную часть которого составляет детектор (фотосопротивление, металлический или полупроводниковый болометр, термоэлемент, фотохимический индикатор, электронно-оптический преобразователь, пьезоэлектрические детекторы и т.д.).

Электрические сигналы от приемника передаются на усилитель, а потом - на управляющее устройство, которое служит для перемещения зеркал (сканирование объекта), разогревания точечного источника света ТИС (пропорционально тепловому излучению), движения фотопленки. Каждый раз пленка засвечивается ТИС соответственно температуре тела в месте исследования.

После управляющего устройства сигнал может передаваться на компьютерную систему с дисплеем. Это позволяет запоминать термограммы, обрабатывать их с помощью аналитических программ. Дополнительные возможности предоставляет цветные тепловизоры (близкие по температуре цвета обозначить контрастными цветами), провести изотермы.

Многие копании в последнее время признают тот факт, что «достучаться» до потенциального клиента, порой, достаточно сложно, его информационное поле настолько загружено различного рода рекламными сообщениями, что таковые просто перестают восприниматься.
Активные продажи по телефону становятся одним из наиболее эффективных способов увеличения продаж в короткие сроки. Холодные звонки направлены на привлечение клиентов, которые ранее не обращались за товаром или услугой, но по ряду факторов являются потенциальными клиентами. Набрав телефонный номер, менеджер активных продаж должен четко осознавать цель холодного звонка. Ведь телефонные переговоры требуют от sales manager особого мастерства и терпения, а так же знание техники и методики ведения переговоров.

Поток излучения Ф  физическая величина, равная количест­ву энергии, излучаемой нагретым телом со всей поверхности в еди­ницу времени :

Энергетическая светимость (излучательность) тела R  энергия, излучаемая в единицу времени с единицы площади нагрето­го тела во всем интервале длин волн (0 < < ∞).:

Спектральная плотность энергетической светимости R  , T это энергия, излучаемая в интервале длин волн от  до +d в единицу времени с единицы площади

Энергетическая светимость R T , являющаяся интегральной характеристикой излучения, связана со спектральной плотностью энергетической светимости соотношением

Так как длина волны и частота связаны известным соотношением  = c /, спектральные характеристики излучения можно характеризовать также и частотой.

Радиационные характеристики тел

Рис. 3. Модель абсо­лютно черного тела

;  абсолютно белое тело,

;  абсолютно черное тело.

Коэффициент поглощения зависит от длины волны и ха­рактеризуется спектральной поглощательной способ­нос­тью  безразмерной физической величиной, показывающей, какая доля энер­гии, падающей в единицу времени на единицу поверхности тела в интервале длин волн от  до + d, им поглощается:

Тело, для которого поглощательная способность одинакова для всех длин волн и зависит только от температуры, называют серым:

2. Законы теплового излучения

2.1. Между спектральной плотностью энергетической светимости и поглощательной способностью любого тела имеется связь, которая выража­ется законом Кирхгофа :

Отношение спектральной плотности энергетической светимости любого тела к его поглощательной способности при дан­ной длине волны и температуре является величиной постоянной для всех тел и равной спектральной плотности энергетической светимо­сти абсолютно черного тела r  , T при той же температуре и дли­не волны.

Здесь r  , T универсальная функция Кирхгофа , при А  , Т = 1 , т.е.универсальная фун­к­ция Кирхгофа есть не что иное, как с пектральная плотность энер­ге­ти­ческой светимости абсолютно чер­но­го тела.

Следствия закона Кирхгофа:

Так как А  , Т < 1, то: энергия излучения любо­го тела всегда меньше энергии излу­че­ния абсолютно черного тела;

Если тело не поглощает энер­гию в некотором диапазоне длин волн (А  , Т = 0), то оно и не из­лучает ее в этом диапазоне ().

Интегральная энергетическая светимость

Для серого тела

т.е. коэффициент поглощения характеризует отношение излучательностей серого и черного тел . В технической литературе его называют степенью черноты серого тела.

2.2. Закон Стефана-Больцмана установлен Д.Стефаном (1879 г.) из анализа экспериментальных данных, а за­тем Л.Больцманом (1884 г.)  теоретическим путем.

 = 5,6710 -8 Вт/(м 2  К 4)  постоянная Стефана-Больцмана,

т.е. энергетическая светимость абсолютно черного тела пропорциональна его абсолютной температуре в четвертой степени.

закон Стефана-Больцмана для серого тела

Закон смещения Вина установлен немецким физиком В.Вином (1893 г.)

, b = 2,910 -3 мK  постоянная Вина. (10)

Длина волны, на которую приходится максимум спектральной плотности энергетической светимости абсо­лютно черного тела, обратно пропорциональна абсолютной темпера­туре этого тела, т.е. с увеличением температуры максимальное выделение энергии смещается в коротковолновый диапазон.

Для продолжения скачивания необходимо собрать картинку:

Тепловое излучение

Тепловое излучение - это электромагнитное излучение, которое возникает за счет энергии вращательного и колебательного движения атомов и молекул в составе вещества. Тепловое излучение характерно для всех тел, которые имеют температуру, превышающую температуру абсолютного нуля.

Тепловое излучение тела человека относится к инфракрасному диапазону электромагнитных волн. Впервые такое излучение было открыто английским астрономом Вильямом Гершелем. В 1865 английский физик Дж. Максвелл доказал, что ИК - излучение имеет электромагнитную природу и представляет собой волны длиной от 760нм до 1-2мм. Чаще всего весь диапазон ИК - излучения делят на области: ближнюю (750нм-2.500нм), среднюю (2.500нм – 50.000нм) и дальнюю (50.000нм-2.000.000нм).

Рассмотрим случай, когда тело А расположено в полости Б, которая ограничена идеальной отражающей (непроницаемой для излучения) оболочкой С (рис.1). В результате многократного отражения от внутренней поверхности оболочки излучение будет сохраняться в пределах зеркальной полости и частично поглощаться телом А. При таких условиях система полость Б – тело А не будет терять энергию, а будет лишь происходить непрерывный обмен энергией между телом А и излучением, которое заполняет полость Б.

Равновесное тепловое излучение имеет такие свойства: однородное (одинаковая плотность потока энергии во всех точках полости), изотропное (возможные направления распространения равновероятны), неполяризованное (направления и значения векторов напряженностей электрического и магнитного полей во всех точках полости изменяются хаотически).

Основными количественными характеристиками теплового излучения являются:

Энергетическая светимость - это количество энергии электромагнитного излучения во всем диапазоне длин волн теплового излучения, которое излучается телом во всех направлениях с единицы площади поверхности за единицу времени: R = E/(S·t), [Дж/(м2с)] = [Вт/м2] Энергетическая светимость зависит от природы тела, температуры тела, состояния поверхности тела и длины волны излучения.

Спектральная плотность энергетической светимости - энергетическая светимость тела для данных длин волн (λ + dλ) при данной температуре (T + dT): Rλ, T = f(λ, T).

Энергетическая светимость тела в пределах каких-то длин волн вычисляется интегрированием Rλ, T = f(λ, T) для T = const:

Коэффициент поглощения - отношение поглощенной телом энергии к падающей энергии. Так, если на тело падает излучение потока dФпад, то одна его часть отражается от поверхности тела - dФотр, другая часть проходит в тело и частично превращается в теплоту dФпогл, а третья часть после нескольких внутренних отражений - проходит через тело наружу dФпр: α = dФпогл/dФпад.

Монохроматический коэффициент поглощения - коэффициент поглощения теплового излучения данной длины волны при заданной температуре: αλ, T = f(λ, T)

Среди тел есть такие тела, которые могут поглощать все тепловое излучение любых длин волн, которое падает на них. Такие идеально поглощающие тела называются абсолютно черными телами. Для них α =1.

Есть также серые тела, для которых α<1, но одинаковый для всех длин волн инфракрасного диапазона.

Моделью АЧТ является малое отверстие полости с теплонепроницаемой оболочкой. Диаметр отверстия составляет не более 0, 1 диаметра полости. При постоянной температуре из отверстия излучается некоторая энергия, соответствующая энергетической светимости абсолютно черного тела. Но АЧТ - это идеализация. Но законы теплового излучения АЧТ помогают приблизиться к реальным закономерностям.

2. Законы теплового излучения

Следствия из закона Кирхгофа:

Систематическое изучение спектров ряда элементов позволило Кирхгофу и Бунзену установить однозначную связь между спектрами поглощения и излучения газов и индивидуальностью соответствующих атомов. Так был предложен спектральный анализ, с помощью которого можно выявить вещества, концентрация которых составляет 0, 1нм.

Распределение спектральной плотности энергетической светимости для абсолютно черного тела, серого тела, произвольного тела. Последняя кривая имеет несколько максимумов и минимумов, что указывает на избирательность излучения и поглощения таких тел.

2. Закон Стефана-Больцмана.

Немецкий физик Вильгельм Вин в 1893 году сформулировал закон, который определяет положение максимума спектральной плотности энергетической светимости тела в спектре излучения АЧТ в зависимости от температуры. Согласно закону, длина волны λmax, на которую приходится максимум спектральной плотности энергетической светимости АЧТ, обратно пропорционален его абсолютной температуре Т: λmax = в/t, где в = 2, 9*10-3 м·К- постоянная Вина.

Таким образом, при увеличении температуры изменяется не только полная энергия излучения, но и сама форма кривой распределения спектральной плотности энергетической светимости. Максимум спектральной плотности при увеличении температуры смещается в сторону более коротких длин волн. Поэтому закон Вина называют законом смещения.

Закон Вина применяется в оптической пирометрии - метода определения температуры по спектру излучения сильно нагретых тел, которые отдалены от наблюдателя. Именно этим методом впервые была определена температура Солнца (для 470нм Т=6160К).

4. Теория Планка. Немецкий ученый в 1900 году выдвинул гипотезу о том, что тела излучают не непрерывно, а отдельными порциями - квантами. Энергия кванта пропорциональна частоте излучения: E = hν = h·c/λ , где h = 6, 63*10-34 Дж·с постоянная Планка.

Тепловое излучение и его характеристики

Тепловое излучение – это электромагнитное излучение тел, возникающее за счет изменения их внутренней энергии (энергии теплового движения атомов и молекул).

Тепловое излучение тела человека относится к инфракрасному диапазону электромагнитных волн.

Инфракрасные лучи занимают диапазон электромагнитных волн с длиной волны от 760 нм до 1-2 мм.

Источник теплового излучения : любое тело, температура которого превышает температуру абсолютного нуля.

Поток излучения (Ф) – количество энергии, которое излучается (поглощается) с выбранной площади (поверхности) по всем направлениям за единицу времени.

2. Интегральная излучательная способность (R)– поток излучения с единицы площади поверхности.

3. Спектральная излучательная способность () – интегральная излучательная способность, относимая к единице спектрального интервала

где интегральная излучательная способность;

– ширина интервала длин волн ().

4. Интегральная поглощательная способность (коэффициент поглощения) –отношение поглощенной телом энергии к падающей энергии.

– поток излучения, который поглощается телом;

– поток излучения, что падает на тело.

5. Спектральная поглощательная способность – коэффициент поглощения, относимый к единичному спектральному интервалу:

Абсолютно черное тело. Серые тела

Абсолютно черное тело – это тело, которое поглощает всю падающую энергию.

Коэффициент поглощения абсолютно черного тела и не зависит от длины волны.

Примеры абсолютно черного тела: сажа, черный бархат.

Серые тела – тела, у которых.

Пример: тело человека считают серым телом.

Черные и серые тела – это физическая абстракция.

Законы теплового излучения

1. Закон Кирхгофа (1859 г.): Отношение спектральной излучательной способности тел к их спектральной поглощательной способности не зависит от природы излучающего тела и равно спектральной излучательной способности абсолютно черного тела при данной температуре:

где – спектральная излучательная способность абсолютно черного тела.

Тепловое излучение является равновесным – сколько энергии излучается телом, столько ее им и поглощается.

Рис. 41. Кривые распределения энергии в спектрах теплового излучения

различных тел (1 – абсолютно черное тело, 2 – серое тело,

3 – произвольное тело)

2. Закон Стефана – Больцмана (1879, 1884): интегральная излучательная способность абсолютно черного тела () прямо пропорциональна четвертой степени его термодинамической температуры (Т).

где –постоянная Стефана – Больцмана

3. Закон Вина (1893):длина волны, на которую приходится максимум спектральной излучательной способности данного тела, обратно пропорциональна температуре.

Где = – постоянная Вина.

Рис. 42. Спектры теплового излучения абсолютно черного тела при различных температурах

Тепловое излучение тела человека

Тело человека имеет постоянную температуру благодаря терморегуляции. Основной частью терморегуляции является теплообмен организма с окружающей средой.

Теплообмен происходит с помощью таких процессов:

а) теплопроводность (0 %), б) конвекция (20 %), в) излучение (50 %), г) испарение (30 %).

Диапазон теплового излучения тела человека

Температура поверхности кожи человека: .

Длина волны соответствует инфракрасному диапазону, потому не воспринимается глазом человека.

Излучательная способность тела человека

Тело человека считается серым телом, так как частично излучает энергию () и поглощает излучение из окружающей среды ().

Энергия (), которую теряет человек за 1 секунду с 1 своего тела вследствие излучения составляет:

где температура окружающей среды: , температура тела человека: .

Контактные методы определения температуры

Термометры: ртутные, спиртовые.

Шкала Цельсия: t°C

Шкала Кельвина: T = 273 + t°C

Термография – это метод определения температуры участка тела человека дистанционно путем оценки интенсивности теплового излучения.

Приборы: термограф или тепловизор (регистрирует распределение температур на выбранном участке человека).

Лекция №16. Тепловое излучение

1. Понятие теплового излучения и его характеристики

Итак, что такое тепловое излучение?

Рис.1. Многократное отражение тепловых волн от зеркальных стенок полости Б

Если распределение энергии остается неизменным для каждой длины волны, то состояние такой системы будет равновесным, а излучение также будет равновесным. Единственным видом равновесного излучения является тепловое. Если по какой-то причине равновесие между излучением и телом сместится, то начинают протекать такие термодинамические процессы, которые вернут систему в состояние равновесия. Если тело А начинает излучать больше, чем поглощает, то тело начинает терять внутреннюю энергию и температура тела (как мера внутренней энергии) начнет падать, что уменьшит количество излучаемой энергии. Температура тела будет падать до тех пор, пока количество излучаемой энергии не станет равным количеству энергии, поглощаемой телом. Таким образом, наступит равновесное состояние.

Коэффициент поглощения - отношение поглощенной телом энергии к падающей энергии. Так, если на тело падает излучение потока dФ пад, то одна его часть отражается от поверхности тела - dФ отр, другая часть проходит в тело и частично превращается в теплоту dФ погл, а третья часть после нескольких внутренних отражений - проходит через тело наружу dФ пр: α = dФ погл /dФ пад.

Коэффициент поглощения α зависит от природы поглощающего тела, длины волны поглощаемого излучения, температуры и состояния поверхности тела.

Моделью АЧТ является малое отверстие полости с теплонепроницаемой оболочкой. Диаметр отверстия составляет не более 0,1 диаметра полости. При постоянной температуре из отверстия излучается некоторая энергия, соответствующая энергетической светимости абсолютно черного тела. Но АЧТ - это идеализация. Но законы теплового излучения АЧТ помогают приблизиться к реальным закономерностям.

2. Законы теплового излучения

1. Закон Кирхгофа. Тепловое излучение является равновесным - сколько энергии излучается телом, столь ее им и поглощается. Для трех тел, находящихся в замкнутой полости можно записать:

Указанное соотношение будет верным и тогда, когда одно из тел будет АЧ:

Это закон Кирхгофа: отношение спектральной плотности энергетической светимости тела к его монохроматическому коэффициенту поглощения (при определенной температуре и для определенной длины волны) не зависит от природы тела и равно для всех тел спектральной плотности энергетической светимости при тех же самых температуре и длине волны.

1. Спектральная энергетическая светимость АЧТ является универсальной функцией длины волны и температуры тела.

2. Спектральная энергетическая светимость АЧТ наибольшая.

3. Спектральная энергетическая светимость произвольного тела равна произведению его коэффициента поглощения на спектральную энергетическую светимость абсолютно черного тела.

4. Любое тело при данной температуре излучает волны той же длины волны, которое оно излучает при данной температуре.

В 1879 году австрийские ученые Йозеф Стефан (экспериментально для произвольного тела) и Людвиг Больцман (теоретически для АЧТ) установили, что общая энергетическая светимость во всем диапазоне длин волн пропорциональна четвертой степени абсолютной температуры тела:

Немецкий физик Вильгельм Вин в 1893 году сформулировал закон, который определяет положение максимума спектральной плотности энергетической светимости тела в спектре излучения АЧТ в зависимости от температуры. Согласно закону, длина волны λ max , на которую приходится максимум спектральной плотности энергетической светимости АЧТ, обратно пропорционален его абсолютной температуре Т: λ max = в/t, где в = 2,9*10 -3 м·К- постоянная Вина.

Представленные законы не позволяли теоретически найти уравнения распределения спектральной плотности энергетической светимости по длинам волн. Труды Релея и Джинса, в которых ученые исследовали спектральный состав излучения АЧТ на основе законов классической физики, привели к принципиальным трудностям, названных ультрафиолетовой катастрофой. В диапазоне УФ-волн энергетическая светимость АЧТ должна была достигать бесконечности, хотя в опытах она уменьшалась к нулю. Эти результаты противоречили закону сохранения энергии.

4. Теория Планка. Немецкий ученый в 1900 году выдвинул гипотезу о том, что тела излучают не непрерывно, а отдельными порциями - квантами. Энергия кванта пропорциональна частоте излучения: E = hν = h·c/λ , где h = 6,63*Дж·с постоянная Планка.

Эта формула находится в соответствии с опытными данными во всем интервале длин волн при всех температурах.

3. Излучение реальных тел и тела человека

Тепловое излучение с поверхности тела человека играет большую роль в теплоотдаче. Существуют такие способы теплоотдачи: теплопроводность (кондукция), конвекция, излучение, испарение. В зависимости от условий, в которых окажется человек, каждый из этих способов может иметь доминирующее значение (так, например, при очень высоких температурах среды ведущая роль принадлежит испарению, а в холодной воде – кондукции, причем температура воды 15 градусов является смертельной средой для обнаженного человека, и через 2-4 часа наступает обморок и смерть вследствие переохлаждения мозга). Доля излучения в общей теплоотдаче может составлять от 75 до 25%. В нормальных условиях около 50% при физиологическом покое.

Существуют особенности спектральной плотности энергетической светимости реальных тел: при 310К, что соответствует средней температуре тела человека, максимум теплового излучения приходится на 9700нм. Любое изменение температуры тела приводит к изменению мощности теплового излучения с поверхности тела (0,1 градус достаточно). Поэтому исследование участков кожи, через ЦНС связанных с определенными органами, способствует выявлению заболеваний, в результате которых температура изменяется довольно значительно (термография зон Захарьина-Геда).

4. Биологическое и терапевтическое действие тепла и холода

Тело человека постоянно излучает и поглощает тепловое излучение. Этот процесс зависит от температур тела человека и окружающей среды. Максимум ИК-излучения тела человека приходится на 9300нм.

5. Физические основы термографии.Тепловизоры

Термография, или тепловидение - это метод функциональной диагностики, основанный на регистрации ИК-излучения тела человека.

Многие копании в последнее время признают тот факт, что «достучаться» до потенциального клиента, порой, достаточно сложно, его информационное поле настолько загружено различного рода рекламными сообщениями, что таковые просто перестают восприниматься.

Активные продажи по телефону становятся одним из наиболее эффективных способов увеличения продаж в короткие сроки. Холодные звонки направлены на привлечение клиентов, которые ранее не обращались за товаром или услугой, но по ряду факторов являются потенциальными клиентами. Набрав телефонный номер, менеджер активных продаж должен четко осознавать цель холодного звонка. Ведь телефонные переговоры требуют от sales manager особого мастерства и терпения, а так же знание техники и методики ведения переговоров.

Характеристики теплового излучения

Основные вопросы темы:

1. Характеристики теплового излучения.

2. Законы теплового излучения (закон Кирхгофа, закон Стефана-Больцмана, закон Вина); формула Планка.

3. Физические основы термографии (тепловидения).

4. Теплоотдача организма.

Любое тело при температурах выше абсолютного нуля (0 К) является источником электромагнитного излучения, которое называют тепловым излучением. Оно возникает за счет внутренней энергии тела.

Диапазон длин электромагнитных волн (спектральный диапазон), излучаемых нагретым телом, очень широк. В теории теплового излучения часто считают, что здесь длина волны меняется от 0 до ¥.

Распределение энергии теплового излучения тела по длинам волн зависит о его температуры. При комнатной температуре почти вся энергия сосредоточена в инфракрасной области шкалы электромагнитных волн. При высокой температуре (1000°C) значительная часть энергии испускается и в видимом диапазоне.

Характеристики теплового излучения

1. Поток (мощность) излучения Ф (иногда обозначается буквой Р ) – энергия, излучаемая за 1 сек со всей поверхности нагретого тела по всем направлениям в пространстве и во всем спектральном диапазоне:

2. Энергетическая светимость R – энергия, излучаемая за 1 сек с 1 м 2 поверхности тела по всем направлениям пространстве и во всем спектральном диапазоне. Если S – площадь поверхности тела, то

3. Спектральная плотность энергетической светимости r λ - энергия, излучаемая за 1 сек с 1м 2 поверхности тела по всем направлениям на длине волны λ в единичном спектральном диапазоне , →

Зависимость r l от l называют спектром теплового излучения тела при данной температуре (при Т = const). Спектр дает распределение излучаемой телом энергии по длинам волн. Он показан на рис. 1.

Можно показать, что энергетическая светимость R равна площади фигуры, ограниченной спектром и осью (рис. 1).

4. Способность нагретого тела поглощать энергию внешнего излучения определяется монохроматическим коэффициентом поглощения а l ,

т.е. а l равноотношению потока излучения с длиной волны l, поглощенного телом, к потоку излучения той же длины волны, упавшему на тело. Из (3.) следует, что а l – величина безразмерная и.

По типу зависимости а от l все тела делятся на 3 группы:

а = 1 на всех длинах волн при любых температурах (рис. 3, 1 ), т.е. абсолютно черное тело полностью поглощает все падающее на него излучение. “Абсолютно черных” тел в природе нет, моделью такого тела может являться замкнутая непрозрачная полость с маленьким отверстием (рис. 2). Луч, попавший в это отверстие, после многократных отражений от стенок будет практически полностью поглощен.

К абсолютно черному телу близко солнце, его Т = 6000 К.

2). Серые тела : их коэффициент поглощения а < 1 и одинаков на всех длинах волн при любых температурах (рис. 3, 2 ). Например, серым телом можно считать тело человека в задачах теплообмена с окружающей средой.

для них коэффициент поглощения а < 1 и зависит от длины волны, т.е. а l = f (l ), эта зависимость представляет собой спектр поглощения тела (рис. 3 , 3 ).

Тепловое излучение длина волны

Законы теплового излучения. Лучистое тепло.

Может, для кого-то это будет новостью, но передача температуры происходит не только теплопроводностью через прикосновение одного тела к другому. Каждое тело (Твердое, жидкое и газообразное) испускает тепловые лучи определенной волны. Эти лучи, уходя от одного тела, поглощаются другим телом, и принимают тепло на себя. И я попытаюсь Вам объяснить, как это происходит, и сколько тепла мы теряем этим излучением у себя дома на отопление. (Я думаю, многим будет интересно увидеть эти цифры). В конце статьи решим задачку из реального примера.

Я не однократно в этом убеждался, что сидя у костра (обычно большого) мое лицо обжигали эти лучи. И если я закрывал костер своими ладонями и при этом руки были вытянуты, то получалось, что мое лицо переставало обжигать. Не трудно догадаться, что эти лучи прямые как световые. Меня обжигает не воздух, циркулирующий вокруг костра, и даже не теплопроводность воздуха, а именно прямые не видимые тепловые лучи, идущие от костра.

В космосе между планетами обычно вакуум и поэтому передача температур осуществляется исключительно тепловыми лучами (Все лучи - это электромагнитные волны).

Тепловое излучение имеет природу такую, как световые и электромагнитные лучи (волны). Просто, эти волны (лучи) имеют разную длину волны.

Например, длины волн в диапазоне 0,76 – 50 мкм, называется инфракрасными. Все тела, имеющие комнатную температуру + 20 °С, излучают в основном инфракрасные волны с длинами волн, близкими к 10 мкм.

Всякое тело, если только температура его отлична от абсолютного нуля (-273,15 °С), способно посылать в окружающее пространство излучение. Поэтому любое тело излучает на окружающие его тела лучи и в свою очередь находится под воздействием излучения этих тел.

Тепловое излучение может поглощаться или проходить в сквозь тело, а также может просто отражаться от тела. Отражение тепловых лучей подобно тому, как если бы световой луч отражался от зеркала. Поглощение теплового излучения подобно тому, как черная крыша сильно нагревается от солнечных лучей. А проникновение или прохождение лучей подобно тому, как лучи проходят в сквозь стекло или воздух. Наиболее распространенным в природе видом электромагнитного излучения является тепловое излучение.

Очень близко по своим свойствам к черному телу относится так называемое реликтовое излучение, или космический микроволновой фон - заполняющее Вселенную излучение с температурой около 3 К.

Вообще в науке теплотехнике, чтобы объяснить процессы тепловых излучений, удобно использовать понятие черного тела, для того чтобы качественно объяснить процессы тепловых излучений. Только черное тело способно в некотором роде облегчить расчеты.

Как было описано выше любое тело способно:

2. Поглощать тепловую энергию.

3. Отражать тепловую энергию.

Черное тело - это тело, которое полностью поглощает тепловую энергию, то есть оно не отражает лучи и в сквозь нее не проходит тепловое излучение. Но не забываем, что черное тело излучает тепловую энергию.

Какие возникают сложности при расчете, если тело не является черным телом?

Тело, которое не является черным телом, имеет такие факторы:

2. Отражает, какую-то часть теплового излучения.

Эти два фактора усложняют расчет на столько, что «мама не горюй». Очень сложно так считать. А ученые по этому поводу толком не объяснили, как рассчитать серое тело. Кстати серое тело - это и есть тело, которое не является черным телом.

Тепловое излучение имеет разные частоты (разные волны), и каждое отдельное тело может иметь разную волну излучения. К тому же при изменении температуры, эта длина волны может меняться, может меняться и ее интенсивность (сила излучения).

Рассмотрим изображение, которое подтверждает сложность вычисления излучательности.

На рисунке изображены два шарика, которые в себе имеют частички этого шарика. Красные стрелки это лучи испускаемые частичками.

Рассмотрим черное тело.

Внутри черного тела глубоко внутри расположены некоторые частички, которые обозначены оранжевым цветом. Они испускают лучи, которые поглощают рядом находящиеся другие частички, которые обозначены желтым цветом. Лучи оранжевых частичек черного тела не способны пройти в сквозь другие частички. И поэтому только наружные частички этого шарика испускают лучи по всей площади шарика. Поэтому расчет черного тела легко считается. Также принято считать, что черное тело испускает весь спектр волн. То есть испускает все имеющиеся волны различных длин. Серое тело может испускать часть спектра волн, только определенной длины волн.

Рассмотрим серое тело.

Внутри серого тела, имеющиеся внутри частички излучают какую то часть лучей, которые проходят в сквозь другие частички. И только поэтому расчет усложняется многократно.

Тепловое излучение - это электромагнитное излучение, возникающее вследствие преобразования энергии теплового движения частиц тела в энергию излучения. Именно тепловой характер возбуждения элементарных излучателей (атомов, молекул и т.п.) противопоставляет тепловое излучение всем другим видам свечения и обуславливает его специфическое свойство зависеть лишь от температуры и оптических характеристик излучающего тела.

Опыт показывает, что тепловое излучение наблюдается у всех тел при любой температуре, отличной от 0 К. Конечно, интенсивность и характер излучения зависят от температуры излучающего тела. Например, все тела, имеющие комнатную температуру + 20 °С, излучают в основном инфракрасные волны с длинами волн, близкими к 10 мкм, а Солнце излучает энергию, максимум которой приходится на 0,5 мкм, что соответствует видимому диапазону. При Т → 0 К тела практически не излучают.

Тепловое излучение ведет к уменьшению внутренней энергии тела и, следовательно, к снижению температуры тела, к охлаждению. Нагретое тело за счет теплового излучения отдает внутреннюю энергию и охлаждается до температуры окружающих тел. В свою очередь, поглощая излучение, могут нагреваться холодные тела. Такие процессы, которые могут происходить и в вакууме, называют радиационным теплообменом.

Абсолютно черное тело - физическая абстракция, применяемая в термодинамике, тело, поглощающее все падающее на него электромагнитное излучение во всех диапазонах и ничего не отражающее. Несмотря на название, абсолютно черное тело само может испускать электромагнитное излучение любой частоты и визуально иметь цвет. Спектр излучения абсолютно черного тела определяется только его температурой.

(Температурный интервал в Кельвинах и их Цвет)

до 1000 Красный

5500-7000 Чисто белый

Наиболее черные реальные вещества, например, сажа, поглощают до 99 % падающего излучения (т. е. имеют альбедо, равное 0,01) в видимом диапазоне длин волн, однако инфракрасное излучение поглощается ими значительно хуже. Глубокий черный цвет некоторых материалов (древесного угля, черного бархата) и зрачка человеческого глаза объясняется тем же механизмом. Среди тел Солнечной системы свойствами абсолютно черного тела в наибольшей степени обладает Солнце. По определению Солнце практически не отражает никакого излучения. Термин был введен Густавом Кирхгофом в 1862.

По спектральной классификации Солнце относится к типу G2V («жёлтый карлик»). Температура поверхности Солнца достигает 6000 K, поэтому Солнце светит почти белым светом, но из-за поглощения части спектра атмосферой Земли у поверхности нашей планеты этот свет приобретает жёлтый оттенок.

Абсолютно чёрное тела - 100% поглощает и при этом нагревается, так и наоборот! нагретое тело - 100% излучает это означает, что есть строгая закономерность (формула излучения абсолютно чёрного тела) между температурой Солнца - и его спектром - так как и спектр и температуру уже определили - да, у Солнца нет отклонений от этих параметров!

В астрономии есть такая диаграмма - «Спектр-Светимость», так вот наше Солнце принадлежит «главной последовательности» звезд, к которой принадлежат и большинство других звезд, то есть почти все звезды «абсолютно чёрные тела», как это не странно. Исключения - белые карлики, красные гиганты и Новые, Сверх-Новые.

Это кто-то физику в школе недоучил.

Абсолютно чёрное тело поглощает ВСЁ излучение и излучает больше всех остальных тел (чем больше тело поглощает, тем сильнее оно нагревается; чем больше оно нагревается, тем больше оно излучает).

Пусть у нас есть две поверхности - серая (с коэффициентом черноты 0,5) и абсолютно чёрная (коэффициент 1).

Коэффициент черноты - это коэффициент поглощения.

Теперь на эти поверхности направив одинаковый поток фотонов, допустим, 100 штук.

Серая поверхность поглотит 50 из них, чёрная - все 100.

Какая поверхность, испускает больше света - в которой «сидит» 50 фотонов или 100?

Излучение абсолютно чёрного тела впервые правильно рассчитал Планк.

Излучение Солнца примерно подчиняется формуле Планка.

И так начнем изучать теорию.

Под излучением (радиацией) понимают испускание и распространение электромагнитных волн любого вида. В зависимости от длины волны различают: Ренгеновские, ультрафиолетовые, инфракрасные, световое (видимое) излучение и радиоволны.

Рентгеновское излучение - электромагнитные волны, энергия фотонов которых лежит на шкале электромагнитных волн между ультрафиолетовым излучением и гамма-излучением, что соответствует длинам волн от 10−2 до 103 Ангстрем. 10 Ангстрем = 1 нм. (0,нм)

Ультрафиолетовое излучение (ультрафиолет, УФ, UV) - электромагнитное излучение, занимающее диапазон между фиолетовой границей видимого излучения и рентгеновским излучением (10 - 380 нм).

Инфракрасное излучение - электромагнитное излучение, занимающее спектральную область между красным концом видимого света (с длиной волны λ = 0,74 мкм) и микроволновым излучением (λ

Сейчас весь диапазон инфракрасного излучения делят на три составляющих:

Коротковолновая область: λ = 0,74-2,5 мкм;

Средневолновая область: λ = 2,5-50 мкм;

Длинноволновая область: λ = 50-2000 мкм;

Видимое излучение - электромагнитные волны, воспринимаемые человеческим глазом. Чувствительность человеческого глаза к электромагнитному излучению зависит от длины волны (частоты) излучения, при этом максимум чувствительности приходится на 555 нм (540 терагерц), в зелёной части спектра. Поскольку при удалении от точки максимума чувствительность спадает до нуля постепенно, указать точные границы спектрального диапазона видимого излучения невозможно. Обычно в качестве коротковолновой границы принимают участок 380-400 нм (750-790 ТГц), а в качестве длинноволновой - 760-780 нм (385-395 ТГц). Электромагнитное излучение с такими длинами волн также называется видимым светом, или просто светом (в узком смысле этого слова).

Радиоизлучение (радиоволны, радиочастоты) - электромагнитное излучение с длинами волн 5 10−5-1010 метров и частотами, соответственно, от 6 1012 Гц и до нескольких Гц. Радиоволны используются при передаче данных в радиосетях.

Тепловое излучение представляет собой процесс распространения в пространстве внутренней энергии излучающего тела путем электромагнитных волн. Возбудителями этих волн являются материальные частицы, входящие в состав вещества. Для распространения электромагнитных волн не требуется материальной среды, в вакууме они распространяются со скоростью света и характеризуются длиной волны λ или частотой колебаний ν. При температуре до 1500 °С основная часть энергии соответствует инфракрасному и частично световому излучению (λ=0,7÷50 мкм).

Следует отметить, что энергия излучения испускается не непрерывно, а в виде определенных порций - квантов. Носителями этих порций энергии являются элементарные частицы излучения - фотоны, обладающие энергией, количеством движений и электромагнитной массой. При попадании на другие тела энергия излучения частично поглощается ими, частично отражается и частично проходит сквозь тело. Процесс превращения энергии излучения во внутреннюю энергию поглощающего тела называется поглощением. Большинство твердых и жидких тел излучают энергию всех длин волн в интервале от 0 до ∞, то есть имеют сплошной спектр излучения. Газы испускают энергию только в определенных интервалах длин волн (селективный спектр излучения). Твердые тела излучают и поглощают энергию поверхностью, а газы - объемом.

Излучаемая в единицу времени энергия в узком интервале изменения длин волн (от λ до λ+dλ) называется потоком монохроматического излучения Qλ. Поток излучения, соответствующий всему спектру в пределах от 0 до ∞, называется интегральным, или полным, лучистым потоком Q(Вт). Интегральный лучистый поток, излучаемый с единицы поверхности тела по всем направлениям полусферического пространства, называется плотностью интегрального излучения (Вт/м 2).

Чтобы понять эту формулу рассмотрим изображение.

Я не случайно изобразил два варианта тела. Формула справедлива только для тела квадратной формы. Так как излучающая площадь должна быть плоской. При условии, что излучает только поверхность тела. Внутренние частицы не излучают.

Q - энергия (Вт), излучаемая лучами со всей площади.

Зная плотность излучения материала, можно рассчитать, сколько энергии уходит на излучение:

Необходимо понимать, что лучи исходящие от плоскости имеют разную интенсивность излучения по отношению к нормали плоскости.

Закон Ламберта. Излучаемая телом лучистая энергия распространяется в пространстве по различным направлениям с различной интенсивностью. Закон, устанавливающий зависимость интенсивности излучения от направления, называется законом Ламберта.

Закон Ламберта устанавливает, что количество лучистой энергии, излучаемое элементом поверхности в направлении другого элемента, пропорционально произведению количества энергии, излучаемой по нормали, на величину пространственного угла, составленного направлением излучения с нормалью

Интенсивность каждого лучика можно найти с помощью тригонометрической функции:

То есть - это своего рода коэффициент угла и он строго подчиняется тригонометрии угла. Коэффициент работает только для черного тела. Так как рядом находящиеся частички будут поглощать боковые лучи. Для серого тела, необходимо учитывать количество проходящих в сквозь частички лучей. Отражение лучей, тоже необходимо учитывать.

Следовательно, наибольшее количество лучистой энергии излучается в перпендикулярном направлении к поверхности излучения. Закон Ламберта полностью справедлив для абсолютно черного тела и для тел, обладающих диффузным излучением при температуре°С. Для полированных поверхностей закон Ламберта неприменим. Для них лучеиспускание при угле будет большим, чем в направлении, нормальном к поверхности.

Немного об определениях. Определения пригодятся, чтобы правильно выражаться.

Отметим, что большинство твердых и жидких тел имеет сплошной (непрерывный) спектр излучения. Это значит, что они обладают способностью излучать лучи всех длин волн.

Лучистым потоком (или потоком излучения) называют отношение лучистой энергии ко времени излучения, Вт:

где Q- энергия излучения, Дж; т - время, с.

Если лучистый поток, излучаемый произвольной поверхностью во всех направлениях (т.е. в пределах полусферы произвольного радиуса) осуществляется в узком интервале длин волн от λ до λ+Δλ, то его называют потоком монохроматического излучения

Суммарное излучение с поверхности тела по всем длинам волн спектра называется интегральным или полным потоком излучения Ф

Интегральный поток, испускаемый с единицы поверхности, носит название поверхностной плотности потока интегрального излучения или излучательности, Вт/м 2 ,

Формулу можно применять и при монохроматическом излучении. Если на поверхность тела падает тепловое монохроматическое излучение, то в общем случае часть, равная В λ этого излучения, поглотится телом, т.е. превратится в другую форму энергии в результате взаимодействия с веществом, часть F λ будет отражена, и часть D λ пройдет сквозь тело. Если принять, что падающее на тело излучение равно единице, то

где В λ , F λ , D λ - коэффициенты соответственно поглощения, отражения

и пропускания тела.

Когда в пределах спектра величины В, F, D остаются постоянными, т.е. не зависят от длины волны, то надобность в индексах отпадает. В этом случае

Если В= 1 (F = D = 0), то тело, полностью поглощающее все падающее на него излучение независимо от длины волны, направления падения и состояния поляризации излучения, называется черным телом или полным излучателем.

Если F=1 (В=D=0), то падающее на тело излучение полностью отражается. В том случае, когда поверхность тела шероховатая, то лучи отражаются рассеянно (диффузное отражение), и тело называют белым, а когда поверхность тела гладкая и отражение следует законам геометрической оптики, то тело (поверхность) называют зеркальным. В том случае, когда D = 1 (В=F=0), тело проницаемо для тепловых лучей (диатермично).

Твердые тела и жидкости для тепловых лучей практически непрозрачны (D = 0), т.е. атермичны. Для таких тел

Абсолютно черных, так же как и прозрачных или белых тел, в природе нет. Такие тела должны рассматриваться как научные абстракции. Но все же некоторые реальные тела могут достаточно близко подходить по своим свойствам к таким идеализированным телам.

Надо отметить, что некоторые тела обладают по отношению к лучам определенной длины волны одними свойствами, а к лучам другой длины - иными. Например, тело может быть прозрачным для инфракрасных лучей и непрозрачным для видимых (световых) лучей. Поверхность тела может быть гладкой по отношению к лучам одной длины волны и шероховатой - для лучей другой длины волны.

Газы, в особенности находящиеся под небольшим давлением, в противоположность твердым и жидким телам излучают линейчатый спектр. Таким образом, газы поглощают и излучают лучи лишь определенной длины волны, других же лучей они не могут ни излучать, ни поглощать. В этом случае говорят о селективном (выборочном) поглощении и излучении.

В теории теплового излучения важную роль играет величина, называемая спектральной плотностью потока излучения, или спектральной излучательностью, представляющей собой отношение плотности лучистого потока, испускаемого в бесконечно малом интервале длин волн от λ до λ+Δλ, к размеру этого интервала длин волн Δλ, Вт/м 2 ,

где E - поверхностная плотность лучистого потока, Вт/м 2 .

Почему нет такого справочника по материалам? Потому что теплопотери тепловым излучением очень маленькие, и я думаю вряд ли превышают 10% в наших бытовых условиях. Поэтому в расчет теплопотерь их не закладывают. Вот когда мы будем часто летать в космос, тогда и появятся все расчеты. Вернее в нашей космонавтике накопились данные по материалам, но в свободной доступности их пока нет.

Закон поглощения лучистой энергии

Если на какое-либо тело толщиной l, падает лучистый поток (смотри рисунок), то в общем случае при прохождении сквозь тело он уменьшается. Принимают, что относительное изменение лучистого потока на пути Δl прямо пропорционально пути потока:

Коэффициент пропорциональности b называется показателем погло-щения, зависящим в общем случае от физических свойств тела и длины волны.

Интегрируя в пределах от l до 0 и принимая b постоянным, получаем

Установим связь между спектральным коэффициентом поглощения тела В λ и спектральным показателем поглощения вещества b λ .

Из определения спектрального коэффициента поглощения В λ имеем

После подстановки в это уравнение значения получим соотношение между спектральным коэффициентом поглощения В λ и спектральным показателем поглощения B λ .

Коэффициент поглощения В λ равен нулю при l 1 = 0 и b λ = 0. При большом значении bλ достаточно весьма малого значения l, но все же не равного нулю, чтобы значение В λ было как угодно близко к единице. В этом случае можно говорить, что поглощение происходит в тонком поверхностном слое вещества. Только в этом понимании возможно говорить о поверхностном поглощении. Для большинства твердых тел благодаря большому значению показателя поглощения b λ имеет место в ука-занном смысле «поверхностное поглощение», в связи с чем на коэффициент поглощения большое влияние оказывает состояние его поверхности.

Тела, хотя и с малым значением показателя поглощения, как, например, газы, могут при их достаточной толщине обладать большим коэффициентом поглощения, т.е. делаются непрозрачными для лучей данной длины волны.

Если b λ =0 для интервала Δλ, а для остальных длин волн b λ не равно нулю, то тело будет поглощать падающее излучение только определен-ных длин волн. В этом случае, как было указано выше, говорят о селективном (выборочном) коэффициенте поглощения.

Подчеркнем принципиальную разницу между показателем поглоще-ния вещества b λ и коэффициентом поглощения В λ тела. Первый характе-ризует физические свойства вещества по отношению к лучам определенной длины волны. Значение В λ зависит не только от физических свойств вещества, из которого состоит тело, но и от формы, размеров и состояния поверхности тела.

Законы излучения лучистой энергии

Макс Планк теоретически на основе электромагнитной теории установил закон (носящий название закона Планка), выражающий зависимость спектральной излучательности черного тела Е 0λ от длины волны λ и температуры Т.

где E 0λ (λ,T) - излучательность черного тела, Вт/м 2 ; T - термодинамическая температура, K; C 1 и C 2 - постоянные; С 1 =2πhc 2 =(3,74150±0,0003) 10-16 Вт м 2 ; С 2 =hc/k=(1,438790±0,00019) 10 -2 ; м K (здесь h=(6,626176±0,000036) Дж с - постоянная Планка; с=(±1,2) м/с - скорость распространения электромагнитных волн в свободном пространстве: k - постоянная Больцмана.)

Из закона Планка следует, что спектральная излучательность может равняться нулю при термодинамической температуре, равной нулю (Т=0), либо при длине волны λ = 0 и λ→∞ (при Т≠0).

Следовательно, черное тело излучает при любой температуре больше 0 К. (Т > 0) лучи всех длин волн, т.е. имеет сплошной (непрерывный) спектр излучения.

Из выше указанной формулы можно получить расчетное выражение для излучательности черного тела:

Интегрируя в пределах изменения λ от 0 до ∞ получаем

В результате разложения подынтегрального выражения в ряд и его интегрирования получают расчетное выражение для излучательности черного тела, называемое законом Стефана-Больцмана:

где Е 0 - излучательность черного тела, Вт/м 2 ;

σ - постоянная Стефана Больцмана, Вт/(м 2 К 4);

σ = (5,67032 ± 0,00071) 10 -8 ;

Т- термодинамическая температура, К.

Формулу часто записывают в более удобной для расчета форме:

где E 0 - коэффициент излучения черного тела; С 0 = 5,67 Вт/(м 2 К 4).

Закон Стефана-Больцмана формулируют так: излучательность чер-ного тела прямо пропорциональна его термодинамической температуре в четвертой степени.

Спектральное распределение излучения черного тела при различных температурах

λ - длина волны от 0 до 10 мкм (нм)

E 0λ - следует понимать так: Как если бы в объеме (м 3) черного тела находиться определенное количество энергии (Вт). Это не означает, что оно излучает такую энергию только наружными частичками. Просто если собрать все частички черного тела в объеме и измерить каждой частички излучаетельность во всех направлениях и сложить их все, то мы получим полную энергию на объеме, которая и указана на графике.

Как видно из расположения изотерм, каждая из них имеет максимум, причем, чем больше термодинамическая температура, тем больше значение E0λ, отвечающее максимуму, а сама точка максимума перемещается в область более коротких волн. Перемещение максимальной спектральной излучательности E0λmax в область более коротких волн известно под названием

закона смещения Вина, по которому

T λ max = 2,88 10 -3 м К = const и λ max = 2,88 10 -3 /Т,

где λ max - длина волны, соответствующая максимальному значению спектральной излучаетльности E 0λmax .

Так, например, при Т = 6000 К (примерная температура поверхности Солнца) максимум Е 0λ располагается в области видимого излучения, на которую падает около 50% излучательности Солнца.

Элементарная площадка под изотермой, заштрихованная на графике равна Е 0λ Δλ. Ясно, что сумма этих площадок, т.е. интеграл представляет собой излучательность черного тела E 0 . Следовательно, площадь между изотермой и осью абсцисс изображает в условном масштабе диаграммы излучательность черного тела. При небольших значениях термодинамической температуры изотермы проходят в непосредственной близости к оси абсцисс, и указанная площадь становится столь малой, что практически ее можно считать равной нулю.

Большую роль в технике играют понятия о так называемых серых телах и сером излучении. Серым называется неселективный тепловой излучатель, способный излучать сплошной спектр, со спектральной излучательностыо E λ для волн всех длин и при всех температурах, составляющей неизменную долю от спектральной излучательности черного тела Е 0λ т.е.

Постоянная ε называется коэффициентом черноты теплового излучателя. Для серых тел коэффициент черноты ε E - Излучательность, Вт;

B - Коэффициент поглощения;

F - Коэффициент отражения;

D - Коэффициент пропускания;

T - Температура К.

Можно положить, что все лучи, посылаемые одним телом, полностью попадают на другое. Примем, что коэффициенты пропускания этих тел D 1 = D 2 = 0 и между поверхностями двух плоскостей находится теплопрозрачная (диатермическая) среда. Обозначим через E 1 , B 1 , F 1 , T 1 , и E 2 , B 2 , F 2 , T 2 соответственно излучательности, коэффициенты поглощения, отражения и температуры пов ерхностей первого и второго тел.

Поток лучистой энергии от поверхности 1 к поверхности 2 равен произведению излучательности поверхности 1 на ее площадь А, т.е. Е 1 А, из которого часть Е 1 В 2 А поглощается поверхностью 2, а часть Е 1 F 2 А отражается обратно на поверхность 1. Из этого отраженного потока Е 1 F 2 А поверхность 1 поглощает E 1 F 2 B 1 A и отражает E 1 F 1 F 2 A. ИЗ отраженного потока энергии E 1 F 1 F 2 A поверхность 2 вновь поглотит E 1 F 1 F 2 B 2 A и отразит E 1 F 1 F 2 A и т.д.

Аналогично происходит передача лучистой энергии потоком Е 2 от поверхности 2 к поверхности 1. В итоге поток лучистой энергии, поглощенный поверхностью 2 (или отданный поверхностью 1),

Поток лучистой энергии, поглощенной поверхностью 1 (или отданной поверхностью 2),

В окончательном итоге поток лучистой энергии, переданной поверхностью 1 к поверхности 2, будет равен разности лучистых потоков Ф 1→2 и Ф 2→1 т.е.

Полученное выражение справедливо при всех значениях температур Т 1 и Т 2 и, в частности, при Т 1 = Т 2 . В последнем случае рассматриваемая система находится в динамическом тепловом равновесии, и на основании второго начала термодинамики необходимо положить Ф 1→2 = Ф 2→1 откуда следует

Полученное равенство носит название закона Кирхгофа: отношение излучательности тела к его коэффициенту поглощения для всех серых тел, находящихся при одной и той же температуре, одинаково и равно излучательности черного тела при той же температуре.

Если какое-либо тело имеет малый коэффициент поглощения, как например, хорошо полированный металл, то это тело имеет и малую излучательность. На этом основании для уменьшения потерь теплоты излучением во внешнюю среду теплоотдающие поверхности покрывают листами полированного металла для тепловой изоляции.

При выводе закона Кирхгофа рассматривалось серое излучение. Вывод останется справедливым и в том случае, если тепловое излучение обоих тел рассматривается только в некоторой части спектра, но однако имеет одинаковый характер, т.е. оба тела испускают лучи, длины волн которых лежат в одной и той же произвольной спектральной области. В предельном случае приходим к случаю монохроматического излучения. Тогда

т.е. для монохроматического излучения закон Кирхгофа должен быть сформулирован так: отношение спектральной излучательности какого-либо тела при определенной длине волны к его коэффициенту поглощения при той же длине волны одинаково для всех тел, находящихся при одинаковых температурах, и равно спектральной излучательности черного тела при той же длине волны и той же температуре.

Заключаем, что для серого тела В = ε, т.е. понятия «коэффициент поглощения» В и «коэффициент черноты» ε для серого тела совпадают. По определению коэффициент черноты не зависит ни от температуры, ни от длины волны, а следовательно, и коэффи-циент поглощения серого тела также не зависит ни от длины волны, ни от температуры.

Излучение газов существенно отличается от излучения твердых тел. Поглощение и излучение газов - селективное (выборочное). Газы поглощают и излучают лучистую энергию только в определенных, довольно узких интервалах Δλ длин волн - так называемых полосах. В остальной части спектра газы не излучают и не поглощают лучистой энергии.

Двухатомные газы обладают ничтожно малой способностью поглощать лучистую энергию, а следовательно, и малой способностью ее излучать. Поэтому эти газы обычно считают диатермичными. В отличие от двухатомных газов многоатомные, в том числе и трехатомные газы, обладают значительной способностью излучать и поглощать лучистую энергию. Из трехатомных газов в области теплотехнических расчетов наибольший практический интерес представляют углекислый газ (CO 2) и водяной пар (H 2 O), имеющие по три полосы излучения.

В отличие от твердых тел показатель поглощения для газов (конечно, в области полос поглощения) мал. Поэтому для газообразных тел уже нельзя говорить о «поверхностном» поглощении, так как поглощение лучистой энергии происходит в конечном объеме газа. В этом смысле поглощение и излучение газов называются объемными. Кроме того, показатель поглощения b λ для газов зависит от температуры.

По закону поглощения спектральный коэффициент поглощения тела может быть определен по:

Для газообразных тел эта зависимость несколько усложняется тем, что на коэффициент поглощения газа влияет его давление. Последнее объясняется тем, что поглощение (излучение) протекает тем интенсивнее, чем большее число молекул встретит луч на своем пути, а объемное число молекул (отношение числа молекул к объему) прямо пропорционально давлению (при t = const).

В технических расчетах газового излучения, обычно поглощающие газы (CO 2 и H 2 O) входят как компоненты в состав смеси газов. Если давление смеси p, а парциальное давление поглощающего (или излучающего) газа р i , то в необходимо вместо l подставить величину р i 1. Величина р i 1, представляющая собой произведение давления газа на его толщину, носит название эффективной толщины слоя. Таким образом, для газов спектральный коэффициент поглощения

Спектральный коэффициент поглощения газа (в пространстве) зависит от физических свойств газа, формы пространства, его размеров и температуры газа. Тогда в соответствии с законом Кирхгофа спектральная излучательность

Излучательность в пределах одной полосы спектра

По этой формуле определяют излучательность газа в свободное пространство (пустоту). (Свободное пространство можно рассматривать как черное пространство при 0 К.) Но газовое пространство всегда ограничено поверхностью твердого тела, в общем случае имеющей температуру Т ст ≠ Т г и коэффициент черноты ε ст

Нагретые тела излучают электромагнитные волны. Это излучение осуществляется за счет преобразования энергии теплового движения частиц тела в энергию излучения.

Правило Прево : Если два тела, находящиеся при одной и той же температуре, поглощают разные количества энергии, то их тепловое излучение при этой температуре должно быть различным.

Излучательной (лучеиспускательной) способностью или спектральной плотностью энергетической светимости тела называют величину Е n ,Т, численно равную поверхностной плотности мощности теплового излучения тела в интервале частот единичной ширины:

Е n ,Т = dW/dn, W – мощность теплового излучения.

Излучательная способность тела зависит от частоты n, абсолютной температуры тела Т, материала, формы и состояния поверхности. В системе СИ Е n ,Т измеряется в дж/м 2 .

Температура – физическая величина, характеризующая степень нагретости тела. Абсолютный нуль равен –273,15°С. Температура в Кельвинах ТК = t°С + 273,15°C.

Поглощательной способностью тела называют величину А n ,Т, показывающую, какая доля от падающей (приобретенной) энергии поглощается телом:

А n ,Т = W погл / W пад, .

А n ,Т – величина безразмерная. Она зависит от n, Т, от формы тела, материала, состояния поверхности.

Введем понятие – абсолютно черное тело (а.ч.т.). Тело называется а.ч.т., если оно при любой температуре поглощает все падающие на него электромагнитные волны, т. е. тело, у которого А n ,Т º 1. Реализовать а.ч.т. можно в виде полости с небольшим отверстием, диаметр которого много меньше диаметра полости (рис. 3). Электромагнитное излучение, попадающее через отверстие во внутрь полости, в результате многократных отражений от внутренней поверхности полости практически полностью ею поглощается независимо от того, из какого материала сделаны стенки полости. Реальные тела не являются абсолютно черными. Однако некоторые из них по оптическим свойствам близки к а.ч.т. (сажа, платиновая чернь, черный бархат). Тело называется серым, если его поглощательная способность одинакова для всех частот и зависит только от температуры, материала и состояния поверхности тела.

Рис. 3. Модель абсолютно чёрного тела.

d-диаметр входного отверстия, D-диаметр полости а.ч.т.

Закон Кирхгофа для теплового излучения. Для произвольной частоты и температуры отношение излучательной способности тела к его поглощательной способности одинаково для всех тел и равно излучательной способности e n ,Т абсолютно черного тела, являющейся функцией только частоты и температуры.

Е n ,Т / А n ,Т = e n ,Т.

Из закона Кирхгофа следует, что если тело при данной температуре Т не поглощает излучения в некотором интервале частот (А n ,Т = 0), то оно не может при этой температуре и равновесно излучать в этом же интервале частот. Поглощательная способность тел может изменяться от 0 до 1. Непрозрачные тела, у которых степень черноты равна 0, не излучают и не поглощают электромагнитных волн. Падающее на них излучение они полностью отражают. Если при этом отражение происходит в соответствии с законами геометрической оптики, то тело называется зеркальным.



Тепловой излучатель, спектральный коэффициент излучения которого не зависит от длины волны, называется неселективным , если же зависит - селективным .

Классическая физика оказалась не в состоянии объяснить теоретически вид функции излучательной способности а.ч.т. e n ,Т, измеренной экспериментально. По классической физике энергия любой системы изменяется непрерывно, т.е. может принимать любые сколь угодно близкие значения. В области больших частот e n ,Т монотонно возрастает с ростом частоты (“ультрафиолетовая катастрофа”). В 1900 г. М. Планк предложил формулу для лучеиспускательной способности а.ч.т.:

,

,

по которой излучение и поглощение энергии частицами излучающего тела должно происходить не непрерывно, а дискретно, отдельными порциями, квантами, энергия которого

Проводя интегрирование формулы Планка по частотам, получаем объемную плотность излучения а.ч.т., закон Стефана-Больцмана:

e Т = sТ 4 ,

где s - постоянная Стефана-Больцмана, равная 5,67×10 -8 Вт×м -2 ×К -4 .

Интегральная излучательная способность абсолютно черного тела пропорциональна четвертой степени его абсолютной температуры. При малых частотах e n ,Т пропорциональна произведению n 2 Т, а в области больших частот e n ,Т пропорциональна n 3 exp(-an/T), где а – некоторая постоянная.

Максимум спектральной плотности излучения может быть найден также из формулы Планка – закон Вина: частота, соответствующая максимальному значению лучеиспускательной способности абсолютно черного тела, пропорциональна его абсолютной температуре. Длина волны l макс, соответствующая максимальному значению лучеиспускательной способности, равна

l макс = b/T,

где b – постоянна Вина, равная 0,002898 м×К.

Значения l макс и n макс не связаны формулой l = с/n, так как максимумы e n ,Т и e l ,Т расположены в разных частях спектра.

Распределение энергии в спектре излучения абсолютно черного тела при различных температурах имеет вид, изображенный на рис. 4. Кривые при Т=6000 и 300 К характеризуют соответственно излучение Солнца и человека. При достаточно высоких температурах (Т>2500 К) часть спектра теплового излучения приходится на видимую область.

Рис. 4. Спектральные характеристики нагретых тел.

Оптоэлектроника изучает лучистые потоки, идущие от предметов. Необходимо собрать достаточное количество лучистой энергии от источника, передать его приемнику и выделить полезный сигнал на фоне помех, шумов. Различают активный и пассивный метод работы прибора. Активным считается метод, когда есть источник излучения и надо излучение передать на приемник. Пассивный метод работы прибора, когда отсутствует специальный источник и используется собственное излучение объекта. На рис. 5 представлены блок-схемы обоих методов.

Рис. 5. Активный (а) и пассивный (б) методы работы прибора.

Применяются различные оптические схемы фокусировки потоков излучения. Напомним основные законы оптики:

1. Закон прямолинейного распространения света.

2. Закон независимости световых пучков.

3. Закон отражения света.

4. Закон преломления света.

Поглощение света в веществе определяется, как

I = I 0 exp(-ad),

где I 0 и I - интенсивности световой волны на входе в слой поглощающего вещества толщиной d и на выходе из него, a - коэффициент поглощения света веществом (закон Бугера-Ламберта).

В различного типа приборах, применяемых в оптоэлектронике, осуществляются фокусировка излучения, идущего от объекта или источника; модуляция излучения; разложение излучения в спектр диспергирующими элементами (призма, решетка, фильтры); сканирование по спектру; фокусировка на приемник излучения. Далее сигнал передаётся на приемное электронное устройство, проводится обработка сигнала и запись информации.

В настоящее время в связи с решением ряда задач по обнаружению объектов находит широкое развитие импульсная фотометрия.


Глава 2. Источники излучения оптического диапазона.

Источниками излучения являются все объекты, которые имеют температуру, отличную от температуры фона. Объекты могут отражать падающее на них излучение, например, солнечное. Максимум излучения Солнца находится у 0.5 мкм. К источникам излучения относятся промышленные здания, автомашины, тело человека, животного и т. д. Простейшей классической моделью излучателя является электрон, колеблющийся около положения равновесия по гармоническому закону.

К естественным источникам излучения относятся Солнце, Луна, Земля, звезды, облака и т.д.

К искусственным источникам излучения относятся источники, параметрами которых можно управлять. Такие источники используются в осветителях оптоэлектронных приборов, в приборах для научных исследований и т.д.

Излучение света происходит в результате переходов атомов, молекул из состояний с большей в состояния с меньшей энергией. Свечение вызывается либо столкновениями между атомами, совершающими тепловое движение, либо электронными ударами.