§5 Теорема Гаусса. Kvant. Теорема Гаусса Теорема гаусса смысл

Экспериментально установленные закон Кулона и принцип суперпозиции позволяют полностью описать электростатическое поле заданной системы зарядов в вакууме. Однако, свойства электростатического поля можно выразить в другой, более общей форме, не прибегая к представлению о кулоновском поле точечного заряда.

Введем новую физическую величину, характеризующую электрическое поле – поток Φ вектора напряженности электрического поля. Пусть в пространстве, где создано электрическое поле, расположена некоторая достаточно малая площадка ΔS . Произведение модуля вектора на площадь ΔS и на косинус угла α между вектором и нормалью к площадке называется элементарным потоком вектора напряженности через площадку ΔS (рис. 1.3.1):

Рассмотрим теперь некоторую произвольную замкнутую поверхность S . Если разбить эту поверхность на малые площадки ΔS i , определить элементарные потоки ΔΦi поля через эти малые площадки, а затем их просуммировать, то в результате мы получим поток Φ вектора через замкнутую поверхность S (рис. 1.3.2):

В случае замкнутой поверхности всегда выбирается внешняя нормаль .

Теорема Гаусса утверждает:

Поток вектора напряженности электростатического поля через произвольную замкнутую поверхность равен алгебраической сумме зарядов, расположенных внутри этой поверхности, деленной на электрическую постоянную ε 0 .

Для доказательства рассмотрим сначала сферическую поверхность S , в центре которой находится точечный заряд q . Электрическое поле в любой точке сферы перпендикулярно к ее поверхности и равно по модулю

где R – радиус сферы. Поток Φ через сферическую поверхность будет равен произведению E на площадь сферы 4πR 2 . Следовательно,

Окружим теперь точечный заряд произвольной замкнутой поверхностью S и рассмотрим вспомогательную сферу радиуса R 0 (рис. 1.3.3).

Рассмотрим конус с малым телесным углом ΔΩ при вершине. Этот конус выделит на сфере малую площадку ΔS 0 , а на поверхности S – площадку ΔS . Элементарные потоки ΔΦ 0 и ΔΦ через эти площадки одинаковы. Действительно,

ΔΦ 0 = E 0 ΔS 0 , ΔΦ = E ΔS cos α = E ΔS .

Здесь ΔS’ = ΔS cos α – площадка, выделяемая конусом с телесным углом ΔΩ на поверхности сферы радиуса n .

Так как , a , следовательно Отсюда следует, что полный поток электрического поля точечного заряда через произвольную поверхность, охватывающую заряд, равен потоку Φ 0 через поверхность вспомогательной сферы:

Аналогичным образом можно показать, что, если замкнутая поверхность S не охватывает точечного заряда q , то поток Φ = 0. Такой случай изображен на рис. 1.3.2. Все силовые линии электрического поля точечного заряда пронизывают замкнутую поверхность S насквозь. Внутри поверхности S зарядов нет, поэтому в этой области силовые линии не обрываются и не зарождаются.

Обобщение теоремы Гаусса на случай произвольного распределения зарядов вытекает из принципа суперпозиции. Поле любого распределения зарядов можно представить как векторную сумму электрических полей точечных зарядов. Поток Φ системы зарядов через произвольную замкнутую поверхность S будет складываться из потоков Φi электрических полей отдельных зарядов. Если заряд q i оказался внутри поверхности S , то он дает вклад в поток, равный если же этот заряд оказался снаружи поверхности, то вклад его электрического поля в поток будет равен нулю.

Таким образом, теорема Гаусса доказана.

Теорема Гаусса является следствием закона Кулона и принципа суперпозиции. Но если принять утверждение, содержащееся в этой теореме, за первоначальную аксиому, то ее следствием окажется закон Кулона. Поэтому теорему Гаусса иногда называют альтернативной формулировкой закона Кулона.

Используя теорему Гаусса, можно в ряде случаев легко вычислить напряженность электрического поля вокруг заряженного тела, если заданное распределение зарядов обладает какой-либо симметрией и общую структуру поля можно заранее угадать.

Примером может служить задача о вычислении поля тонкостенного полого однородно заряженного длинного цилиндра радиуса R . Эта задача имеет осевую симметрию. Из соображений симметрии электрическое поле должно быть направлено по радиусу. Поэтому для применения теоремы Гаусса целесообразно выбрать замкнутую поверхность S в виде соосного цилиндра некоторого радиуса r и длины l , закрытого с обоих торцов (рис. 1.3.4).

При r R весь поток вектора напряженности будет проходить через боковую поверхность цилиндра, площадь которой равна 2πrl , так как поток через оба основания равен нулю. Применение теоремы Гаусса дает:

Этот результат не зависит от радиуса R заряженного цилиндра, поэтому он применим и к полю длинной однородно заряженной нити.

Для определения напряженности поля внутри заряженного цилиндра нужно построить замкнутую поверхность для случая r < R . В силу симметрии задачи поток вектора напряженности через боковую поверхность гауссова цилиндра должен быть и в этом случае равен Φ = E rl . Согласно теореме Гаусса, этот поток пропорционален заряду, оказавшемуся внутри замкнутой поверхности. Этот заряд равен нулю. Отсюда следует, что электрическое поле внутри однородно заряженного длинного полого цилиндра равно нулю.

Аналогичным образом можно применить теорему Гаусса для определения электрического поля в ряде других случаев, когда распределение зарядов обладает какой-либо симметрией, например, симметрией относительно центра, плоскости или оси. В каждом из таких случаев нужно выбирать замкнутую гауссову поверхность целесообразной формы. Например, в случае центральной симметрии гауссову поверхность удобно выбирать в виде сферы с центром в точке симметрии. При осевой симметрии замкнутую поверхность нужно выбирать в виде соосного цилиндра, замкнутого с обоих торцов (как в рассмотренном выше примере). Если распределение зарядов не обладает какой-либо симметрией и общую структуру электрического поля угадать невозможно, применение теоремы Гаусса не может упростить задачу определения напряженности поля.

Рассмотрим еще один пример симметричного распределения зарядов – определение поля равномерно заряженной плоскости (рис. 1.3.5).

В этом случае гауссову поверхность S целесообразно выбрать в виде цилиндра некоторой длины, закрытого с обоих торцов. Ось цилиндра направлена перпендикулярно заряженной плоскости, а его торцы расположены на одинаковом расстоянии от нее. В силу симметрии поле равномерно заряженной плоскости должно быть везде направлено по нормали. Применение теоремы Гаусса дает:

где σ – поверхностная плотность заряда , т. е. заряд, приходящийся на единицу площади.

Полученное выражение для электрического поля однородно заряженной плоскости применимо и в случае плоских заряженных площадок конечного размера. В этом случае расстояние от точки, в которой определяется напряженность поля, до заряженной площадки должно быть значительно меньше размеров площадки.

Для полноценного описания электростатического поля заданной системы зарядов в вакууме достаточно экспериментально подтвержденного закона Кулона и принципа суперпозиции. Но при этом существует возможность свойства электростатического поля охарактеризовать в ином обобщенном виде, не опираясь на утверждения касательно кулоновского поля точечного заряда.

Зададим новую физическую величину, описывающую электрическое поле – поток Φ вектора напряженности электрического поля. Предположим, что в пространстве, содержащем заданное электрическое поле, имеется некая достаточно малая площадка Δ S .

Определение 1

Элементарный поток вектора напряженности (через площадку S) – это физическая величина, равная произведению модуля вектора E → , площади Δ S и косинуса угла α между вектором и нормалью к площадке:

Δ Φ = E Δ S cos α = E n Δ S.

В данной формуле E n является модулем нормальной составляющей поля E → .

Рисунок 1 . 3 . 1 . Иллюстрация элементарного потока Δ Φ .

Пример 1

Теперь возьмем для рассмотрения некую произвольную замкнутую поверхность S . Разобьем заданную поверхность на площадки небольшого размера Δ S i , рассчитаем элементарные потоки Δ Φ i поля через эти малые площадки, после чего найдем их сумму, что в итоге даст нам поток Φ вектора через замкнутую поверхность S (рис. 1 . 3 . 2):

Φ = ∑ ∆ Φ i = ∑ E m ∆ S i

Когда речь идет о поверхности замкнутого типа, всегда используется внешняя нормаль.

Рисунок 1 . 3 . 2 . Расчет потока Ф через произвольную замкнутую поверхность S .

Теорема или закон Гаусса для электростатического поля в вакууме является одним из основных электродинамических законов.

Теорема 1

Поток вектора напряженности электростатического поля E → через произвольную замкнутую поверхность равен алгебраической сумме зарядов, расположенных внутри этой поверхности, деленной на электрическую постоянную ε 0 .

Уравнение Гаусса имеет вид:

Φ = 1 ε 0 ∑ q в н у т р

Доказательство 1

Докажем указанную теорию: для этого исследуем сферическую поверхность (или поверхность шара) S . В центре заданной поверхности расположен точечный заряд q . Любая точка сферы обладает электрическим полем, перпендикулярным поверхности сферы и равным по модулю:

E = E n = 1 4 π ε 0 · q R 2 ,

где R является радиусом сферы.

Поток Φ через поверхность шара запишется, как произведение E и площади сферы 4 π R 2 . Тогда: Φ = 1 ε 0 q .

Следующим нашим шагом будет окружение точечного заряда произвольной поверхностью S замкнутого типа; зададим также вспомогательную сферу R 0 (рис. 1 . 3 . 3).

Рисунок 1 . 3 . 3 . Поток электрического поля точечного заряда через произвольную поверхность S , окружающую заряд.

Возьмем для рассмотрения конус с малым телесным углом Δ Ω при вершине. Рассматриваемый конус задаст на сфере малую площадку Δ S 0 , а на поверхности S – площадку Δ S . Элементарные потоки Δ Φ 0 и Δ Φ через эти площадки являются одинаковыми. В самом деле:

Δ Φ 0 = E 0 Δ S 0 , Δ Φ = E Δ S cos α = E Δ S " ,

где выражением Δ S " = Δ S cos α определяется площадка, которая задастся конусом с телесным углом Δ Ω на поверхности сферы радиуса n .

Поскольку ∆ S 0 ∆ S " = R 0 2 r 2 , то ∆ Φ 0 = ∆ Φ . Из полученного следует вывод о том, что полный поток электрического поля точечного заряда через произвольную поверхность, охватывающую заряд, равен потоку Φ 0 через поверхность вспомогательной сферы:

Φ = Φ 0 = q ε 0 .

Так же мы можем продемонстрировать, что, когда замкнутая поверхность S не охватывает точечный заряд q , поток Φ равен нулю. Этот случай проиллюстрирован на рис. 1 . 3 . 2 . Все силовые линии электрического поля точечного заряда пронизывают замкнутую поверхность S насквозь. Внутри поверхности S зарядов нет, т.е. в этой области не наблюдается обрыва или зарождения силовых линий.

Обобщение теоремы Гаусса на случай произвольного распределения зарядов является следствием из принципа суперпозиции. Поле любого распределения зарядов возможно записать в виде векторной суммы электрических полей точечных зарядов. Поток Φ системы зарядов через произвольную замкнутую поверхность S сложится из потоков Φ i электрических полей отдельных зарядов. Когда заряд q i расположен внутри поверхности S , он дает вклад в поток, равный q i ε 0 . В случае расположения заряда снаружи поверхности его вклад в поток есть нуль.

Так, мы доказали теорему Гаусса.

Замечание 1

Теорема Гаусса, по сути, есть следствие закона Кулона и принципа суперпозиции. Однако, взяв за изначальную аксиому утверждения теоремы, следствием станет закон Кулона, в связи с чем теорему Гаусса порой называют альтернативной формулировкой закона Кулона .

Опираясь на теорему Гаусса, в определенных случаях легко определить напряженность электрического поля вокруг заряженного тела (при наличии заранее угаданных симметрии заданного распределения зарядов и общей структуры поля).

Пример 2

В качестве примера можно рассмотреть задачу, в которой необходимо вычислить поле тонкостенного полого однородно заряженного длинного цилиндра с радиусом R . Такая задача имеет осевую симметрию, и из соображений симметрии электрическое поле должно иметь направление по радиусу. Таким образом, чтобы иметь возможность применить теорему Гаусса, оптимально выбрать поверхность замкнутого типа S в виде соосного цилиндра некоторого радиуса r и длины l , закрытого с обоих торцов (рис. 1 . 3 . 4).

Рисунок 1 . 3 . 4 . Иллюстрация поля однородно заряженного цилиндра. O O " – ось симметрии.

Если r ≥ R , то весь поток вектора напряженности пройдет через боковую поверхность цилиндра, поскольку поток через оба основания есть нуль. Формула площади боковой поверхности цилиндра запишется как: 2 π r l . Применим закон Гаусса и получим:

Φ = E 2 π r l = τ l ε 0 .

В указанном выражении τ является зарядом длины цилиндра. Далее можно записать:

E = τ 2 π ε 0 r .

Данное выражение не имеет зависимости от радиуса R заряженного цилиндра, а значит оно применимо и к полю длинной однородно заряженной нити.

Чтобы найти напряженность поля внутри заряженного цилиндра, необходимо создать замкнутую поверхность для случая r < R . В соответствии с симметрией задачи поток вектора напряженности через боковую поверхность цилиндра должен быть, и в этом случае он равен Φ = E 2 π r l . Исходя из гауссовской теоремы, этот поток находится в пропорции к заряду, расположенному внутри замкнутой поверхности. Заряд этот равен нулю, откуда вытекает, что электрическое поле внутри однородно заряженного длинного полого цилиндра тоже есть нуль.

Точно так же теорема и формула Гаусса применимы для определения электрического поля в иных случаях, когда распределение зарядов охарактеризовано какой-либо симметрией, к примеру, симметрией относительно центра, плоскости или оси. Во всех этих случаях необходимо выбирать замкнутую гауссову поверхность подходящей формы.

Пример 3

К примеру, в случае центральной симметрии поверхность оптимально выбрать в виде сферы, у которой центр расположен в точке симметрии. Когда мы имеем симметрию относительно оси, подходящим видом замкнутой поверхности будет соосный цилиндр, закрытый с обоих торцов (аналогично рассмотренному выше примеру).

При отсутствии симметрии и невозможности угадать общую структуру поля, теорема Гаусса не сможет быть применена для упрощения решения задачи по определению напряженности поля.

Пример 4

Разберем еще пример распределения зарядов при наличии симметрии: нахождение поля равномерно заряженной плоскости (рис. 1 . 3 . 5).

Рисунок 1 . 3 . 5 . Поле равномерно заряженной плоскости. σ – поверхностная плотность заряда. S – замкнутая гауссова поверхность.

Здесь гауссову поверхность S оптимально задать как цилиндр некой длины, замкнутый с обоих концов. Ось цилиндра является перпендикуляром к заряженной плоскости; в свою очередь, торцы цилиндра находятся на одинаковом расстоянии от нее. В соответствии с симметрией поле равномерно заряженной плоскости должно везде иметь направление по нормали. Применим теорему Гаусса и получим:

2 E ∆ S = σ ∆ S ε 0 или E = σ 2 ε 0 .

Здесь σ является поверхностной плотностью заряда или зарядом, приходящимся на единицу площади.

Выражение, которое мы получили для электрического поля однородно заряженной плоскости, возможно использовать и для плоских заряженных площадок конечного размера: здесь расстояние от точки, в которой мы определяем напряженность поля, до заряженной площадки должно быть значимо меньше размеров площадки.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Как было сказано выше, силовые линии условились проводить с такой густотой, чтобы количество линий, пронизывающих единицу поверхности, перпендикулярной к линиям площадки, было бы равно модулю вектора . Тогда по картине линий напряженности можно судить не только о направлении, но и величине вектора в различных точках пространства.

Рассмотрим силовые линии неподвижного положительного точечного заряда. Они представляют собой радиальные прямые, выходящие из заряда и заканчивающиеся на бесконечности. Проведем N таких линий. Тогда на расстоянии r от заряда число силовых линий, пересекающих единицу поверхности сферы радиуса r , будет равно . Эта величина пропорциональна напряженности поля точечного заряда на расстоянии r. Число N всегда можно выбрать таким, чтобы выполнялось равенство

откуда . Поскольку силовые линии непрерывны, то такое же число силовых линий пересекает замкнутую поверхность любой формы, охватывающую заряд q. В зависимости от знака заряда силовые линии либо входят в эту замкнутую поверхность, либо выходят наружу. Если число выходящих линий считать положительным, а входящих – отрицательным, то можно опустить знак модуля и записать:

. (1.4)

Поток вектора напряженности. Поместим в электрическое поле элементарную площадку, имеющую площадь . Площадка должна быть настолько малой, чтобы напряженность электрического поля во всех ее точках можно было считать одинаковой. Проведем нормаль к площадке (рис. 1.17). Направление этой нормали выбирается произвольно. Нормаль составляет угол с вектором . Потоком вектора напряженности электрического поля через выделенную поверхность называется произведение площади поверхности на проекцию вектора напряженности электрического поля на нормаль к площадке:

где – проекция вектора на нормаль к площадке .

Поскольку число силовых линий, пронизывающих единичную площадку, равно модулю вектора напряженности в окрестности выделенной площадки, то поток вектора напряженности через поверхность пропорционален числу силовых линий, пересекающих эту поверхность. Поэтому, в общем случае, наглядно поток вектора напряженности поля через площадку можно интерпретировать как величину, равную числу силовых линий, пронизывающих эту площадку:

. (1.5)

Заметим, что выбор направления нормали условен, ее можно направить и в другую сторону. Следовательно, поток – величина алгебраическая: знак потока зависит не только от конфигурации поля, но и от взаимной ориентации вектора нормали и вектора напряженности. Если эти два вектора образуют острый угол, поток положителен, если тупой – отрицателен. В случае замкнутой поверхности принято нормаль брать наружу области, охватываемой этой поверхностью, то есть выбирать внешнюю нормаль.

Если поле неоднородно и поверхность произвольна, то поток определяется так. Всю поверхность надо разбить на малые элементы площадью , вычислить потоки напряженности через каждый из этих элементов, а потом просуммировать потоки через все элементы:

Таким образом, напряженность поля характеризует электрическое поле в точке пространства. Поток напряженности зависит не от значения напряженности поля в данной точке, а от распределения поля по поверхности той или иной площади.

Силовые линии электрического поля могут начинаться только на положительных зарядах и заканчиваться на отрицательных. Они не могут начинаться или обрываться в пространстве. Поэтому, если внутри некоторого замкнутого объема нет электрического заряда, то полное число линий, входящих в данный объем и выходящих из него, должно равняться нулю. Если из объема выходит больше линий, чем входит в него, то внутри объема находится положительный заряд; если входит линий больше, чем выходит, то внутри должен быть отрицательный заряд. При равенстве полного заряда внутри объема нулю или при отсутствии в нем электрического заряда линии поля пронизывают его насквозь, и полный поток равен нулю.

Эти простые соображения не зависят от того, как электрический заряд распределен внутри объема. Он может находиться в центре объема или вблизи поверхности, ограничивающей объем. В объеме может находиться несколько положительных и отрицательных зарядов, распределенных внутри объема любым способом. Только суммарный заряд определяет полное число входящих или выходящих линий напряженности.

Как видно из (1.4) и (1.5), поток вектора напряженности электрического поля через произвольную замкнутую поверхность, охватывающую заряд q, равен . Если внутри поверхности находится n зарядов, то, согласно принципу суперпозиции полей, полный поток будет складываться из потоков напряженностей полей всех зарядов и будет равен , где под в этом случае подразумевается алгебраическая сумма всех зарядов, охватываемых замкнутой поверхностью.

Теорема Гаусса. Гаусс первым обнаружил тот простой факт, что поток вектора напряженности электрического поля через произвольную замкнутую поверхность должен быть связан с полным зарядом, находящимся внутри этого объема:

Гаусс Карл Фридрих (1777–1855)

Великий немецкий математик, физик и астроном, создатель абсолютной системы единиц в физике. Разработал теорию электростатического потенциала и доказал важнейшую теорему электростатики (теорема Гаусса). Создал теорию построения изображений в сложных оптических системах. Одним из первых пришел к мысли о возможности существования неевклидовой геометрии. Кроме того, Гаусс внес выдающийся вклад практически во все разделы математики.

Последнее соотношение и представляет собой теорему Гаусса для электрического поля:поток вектора напряженности через произвольную замкнутую поверхность пропорционален алгебраической сумме зарядов, расположенных внутри этой поверхности.Коэффициент пропорциональности зависит от выбора системы единиц.

Следует отметить, что теорема Гаусса получается как следствие закона Кулона и принципа суперпозиции. Если бы напряженность электрического поля изменялась бы не обратно пропорционально квадрату расстояния, то теорема оказалась бы несправедливой. Поэтому теорема Гаусса применима к любым полям, в которых строго выполняется закон обратных квадратов и принцип суперпозиции, например, к гравитационному полю. В случае гравитационного поля роль зарядов, создающих поле, играют массы тел. Поток линий гравитационного поля через замкнутую поверхность пропорционален полной массе, заключенной внутри этой поверхности.

Напряженность поля заряженной плоскости. Применим теорему Гаусса для определения напряженности электрического поля бесконечной заряженной плоскости. Если плоскость бесконечна и заряжена равномерно, то есть поверхностная плотность заряда одинакова в любом ее месте, то линии напряженности электрического поля в любой точке перпендикулярны этой плоскости. Чтобы показать это, воспользуемся принципом суперпозиции для вектора напряженности. Выделим два элементарных участка на плоскости, которые можно считать точечными для точки А , в которой необходимо определить напряженность поля. Как видно из рис. 1.18, результирующий вектор напряженности будет направлен перпендикулярно плоскости. Поскольку плоскость можно разбить на бесконечное количество пар таких участков для любой точки наблюдения, то, очевидно, что силовые линии поля заряженной плоскости перпендикулярны к плоскости, и поле является однородным (рис. 1.19). Если бы это было не так, то при перемещении плоскости вдоль самой себя поле в каждой точке пространства менялось, но это противоречит симметрии заряженной системы (плоскость бесконечна). В случае положительно заряженной плоскости силовые линии начинаются на плоскости и заканчиваются на бесконечности, а для отрицательно заряженной плоскости силовые линии начинаются на бесконечности и входят в плоскость.

Рис. 1.18 Рис. 1.19

Для определения напряженности электрического поля бесконечной положительно заряженной плоскости мысленно выделим в пространстве цилиндр, ось которого перпендикулярна заряженной плоскости, а основания параллельны ей, и одно из оснований проходит через интересующую нас точку поля (рис. 1.19). Цилиндр вырезает из заряженной плоскости участок площадью , и такую же площадь имеют основания цилиндра, расположенные по разные стороны от плоскости.

Согласно теореме Гаусса поток вектора напряженности электрического поля через поверхность цилиндра связан с электрическим зарядом внутри цилиндра выражением:

.

Так как линии напряженности пересекают лишь основания цилиндра, поток через боковую поверхность цилиндра равен нулю. Поэтому поток вектора напряженности через цилиндрическую поверхность будет складываться только из потоков через основания цилиндра, следовательно,

Сравнивая два последних выражения для потока вектора напряженности, получим

Напряженность электрического поля между разноименно заряженными пластинами. Если размеры пластин значительно превосходят расстояние между ними, то электрическое поле каждой из пластин можно считать близким к полю бесконечной равномерно заряженной плоскости. Так как линии напряженности электрического поля разноименно заряженных пластин между пластинами направлены в одну сторону (рис. 1.20), то напряженность поля между пластинами равна

.

Во внешнем пространстве линии напряженности электрического поля разноименно заряженных пластин имеют противоположные направления, поэтому вне этих пластин результирующая напряженность электрического поля равна нулю. Полученное для напряженности выражение справедливо для больших заряженных пластин, когда напряженность определяется в точке, расположенной далеко от их краев.

Напряженность электрического поля равномерно заряженной тонкой проволоки бесконечной длины. Найдем зависимость напряженности электрического поля равномерно заряженной тонкой проволоки бесконечной длины от расстояния до оси проволоки, используя теорему Гаусса. Выделим участок проволоки конечной длины . Если линейная плотность заряда на проволоке , то заряд выделенного участка равен .

1. Напряженность электростатического поля, создаваемого равномерно заряженной сферической поверхностью.

Пусть сферическая поверхность радиуса R (рис. 13.7) несет на себе равномерно распределенный заряд q, т.е. поверхностная плотность заряда в любой точке сферы будет одинакова.

2. Электростатическое поле шара.

Пусть имеем шар радиуса R, равномерно заряженный с объемной плотностью.

В любой точке А, лежащей вне шара на расстоянии r от его центра (r>R), его поле аналогично полю точечного заряда , расположенного в центре шара. Тогда вне шара

(13.10)

а на его поверхности (r=R)

(13.11)

В точке В, лежащей внутри шара на расстояний r от его центра (r>R), поле определяется лишь зарядом , заключенным внутри сферы радиусом r. Поток вектора напряженности через эту сферу равен

с другой стороны, в соответствии с теоремой Гаусса

Из сопоставления последних выражений следует

(13.12)

где- диэлектрическая проницаемость внутри шара. Зависимость напряженности поля, создаваемого заряженной сферой, от расстояния до центра шара приведена на (рис.13.10)

3. Напряженность поля равномерно заряженной бесконечной прямолинейной нити (или цилиндра).

Предположим, что полая цилиндрическая поверхность радиуса R заряжена с постоянной линейной плотностью .

Проведем коаксиальную цилиндрическую поверхность радиуса Поток вектора напряженности через эту поверхность

По теореме Гаусса

Из последних двух выражений определяем напряженность поля, создаваемого равномерно заряженной нитью:

(13.13)

Пусть плоскость имеет бесконечную протяженность и заряд на единицу площади равен σ. Из законов симметрии следует, что поле направлено всюду перпендикулярно плоскости, и если не существует никаких других внешних зарядов, то поля по обе стороны плоскости должны быть одинаковы. Ограничим часть заряженной плоскости воображаемым цилиндрическим ящиком, таким образом, чтобы ящик рассекался пополам и его образующие были перпендикулярны, а два основания, имеющие площадь S каждое, параллельны заряженной плоскости (рис 1.10).

Суммарный поток вектора; напряженности равен вектору , умноженному на площадь S первого основания, плюс поток вектора через противоположное основание. Поток напряженности через боковую поверхность цилиндра равен нулю, т.к. линии напряженности их не пересекают. Таким образом, С другой стороны по теореме Гаусса

Следовательно

но тогда напряженность поля бесконечной равномерно заряженной плоскости будет равна

Вычисление напряженности поля большой системы электрических зарядов с помощью принципа суперпозиции электростатических полей можно существенно упростить, используя теорему Гаусса. Эта теорема определяет поток вектора напряженности электрического поля через произвольную замкнутую поверхность.

Для произвольной замкнутой поверхности S поток вектора напряженности через эту поверхность определяется выражением

(1.23)

где проекция вектора на нормаль к площадке dS (рис. 1.10); вектор, модуль которого равен dS , а направление совпадает с направлением нормали к площадке ().

Рассмотрим сферическую поверхность радиуса r , охватывающую точечный заряд q , находящийся в ее центре (рис. 1.11). В соответствии с формулой (1.23) поток вектора напряженности сквозь эту поверхность будет равен:

Этот результат справедлив для замкнутой поверхности любой формы: если окружить рассматриваемую сферу произвольной замкнутой поверхностью, то каждая линия напряженности, пронизывающая сферу, пройдет и сквозь эту поверхность.

Рассмотрим теперь общий случай произвольной замкнутой поверхности, окружающей n зарядов. В соответствии с принципом суперпозиции напряженность поля, создаваемого всеми зарядами, равна векторной сумме напряженностей полей, обусловленных каждым зарядом в отдельности; поэтому поток вектора напряженности результирующего поля будет равен:

Согласно (1.24) каждый из интегралов, стоящий под знаком суммы, равен . Следовательно,

(1.25)

т.е. поток вектора напряженности электростатического поля в вакууме сквозь произвольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности зарядов, деленной на электрическую постоянную.

Применим теорему Гаусса для определения напряженности поля равномерно заряженной бесконечной плоскости. В этом случае ее поверхностная плотность заряда

одинакова в любом месте плоскости. Это означает, что линии напряженности перпендикулярны плоскости в любой точке, т.е. поле заряженной плоскости однородно (рис. 1.12).

Мысленно выделим в пространстве цилиндр, ось которого перпендикулярна плоскости и одно из оснований проходит через интересующую нас точку. Согласно теореме Гаусса,

С другой стороны, так как линии напряженности пересекают только основания цилиндра, поток вектора можно выразить через напряженность электрического поля у обоих оснований цилиндра, т.е.

Приведем (без вывода) выражения для расчета напряженности электростатического поля, образованного некоторыми другими заряженными телами.