Открытие гомеостаза. Понятие о гомеостазе. Проявление гомеостаза на разных уровнях организации биологических систем. Структурный гомеостаз, механизмы его поддержания

Многоклеточным организмам для существования необходимо сохранять постоянство внутренней среды . Многие экологи убеждены, что этот принцип применим также и к внешней среде. Если система неспособна восстановить свой баланс, она может в итоге перестать функционировать.

Комплексные системы - например, организм человека - должны обладать гомеостазом, чтобы сохранять стабильность и существовать. Эти системы не только должны стремиться выжить, им также приходится адаптироваться к изменениям среды и развиваться.

Свойства гомеостаза

Гомеостатические системы обладают следующими свойствами:

  • Нестабильность системы: тестирует, каким образом ей лучше приспособиться.
  • Стремление к равновесию : вся внутренняя, структурная и функциональная организация систем способствует сохранению баланса.
  • Непредсказуемость : результирующий эффект от определённого действия зачастую может отличаться от того, который ожидался.
  • Регуляция количества микронутриентов и воды в теле - осморегуляция . Осуществляется в почках .
  • Удаление отходов процесса обмена веществ - выделение. Осуществляется экзокринными органами - почками, лёгкими , потовыми железами и желудочно-кишечным трактом .
  • Регуляция температуры тела. Понижение температуры через потоотделение , разнообразные терморегулирующие реакции.
  • Регуляция уровня глюкозы в крови. В основном осуществляется печенью , инсулином и глюкагоном , выделяемыми поджелудочной железой .
  • Регуляция уровня основного обмена в зависимости от пищевого режима.

Важно отметить, что, хотя организм находится в равновесии, его физиологическое состояние может быть динамическим. Во многих организмах наблюдаются эндогенные изменения в форме циркадного , ультрадианного и инфрадианного ритмов . Так, даже находясь в гомеостазе, температура тела, кровяное давление , частота сердечных сокращений и большинство метаболических индикаторов не всегда находятся на постоянном уровне, но изменяются в течение времени.

Механизмы гомеостаза: обратная связь

Когда происходит изменение в переменных, наблюдаются два основных типа обратной связи, на которые реагирует система:

  1. Отрицательная обратная связь , выражающаяся в реакции, при которой система отвечает так, чтобы изменить направление изменения на противоположное. Так как обратная связь служит сохранению постоянства системы, это позволяет соблюдать гомеостаз.
    • Например, когда концентрация углекислого газа в организме человека увеличивается, лёгким приходит сигнал к увеличению их активности и выдыханию большего количество углекислого газа.
    • Терморегуляция - другой пример отрицательной обратной связи. Когда температура тела повышается (или понижается) терморецепторы в коже и гипоталамусе регистрируют изменение, вызывая сигнал из мозга. Данный сигнал, в свою очередь, вызывает ответ - понижение температуры (или повышение).
  2. Положительная обратная связь , которая выражается в усилении изменения переменной. Она оказывает дестабилизирующий эффект, поэтому не приводит к гомеостазу. Положительная обратная связь реже встречается в естественных системах, но также имеет своё применение.
    • Например, в нервах пороговый электрический потенциал вызывает генерацию намного большего потенциала действия . Свёртывание крови и события при рождении можно привести в качестве других примеров положительной обратной связи.

Устойчивым системам необходимы комбинации из обоих типов обратной связи. Тогда как отрицательная обратная связь позволяет вернуться к гомеостатическому состоянию, положительная обратная связь используется для перехода к совершенно новому (и, вполне может быть, менее желанному) состоянию гомеостаза, - такая ситуация называется «метастабильность». Такие катастрофические изменения могут происходить, например, с увеличением питательных веществ в реках с прозрачной водой, что приводит к гомеостатическому состоянию высокой эвтрофикации (зарастание русла водорослями) и замутнению.

Экологический гомеостаз

В нарушенных экосистемах, или субклимаксовых биологических сообществах - как, например, остров Кракатау , после сильного извержения вулкана в - состояние гомеостаза предыдущей лесной климаксовой экосистемы было уничтожено, как и вся жизнь на этом острове. Кракатау за годы после извержения прошёл цепь экологических изменений, в которых новые виды растений и животных сменяли друг друга, что привело к биологической вариативности и в результате климаксовому сообществу. Экологическая сукцессия на Кракатау осуществилась за несколько этапов. Полная цепь сукцессий, приведшая к климаксу, называется присерией. В примере с Кракатау на этом острове образовалось климаксовое сообщество с восемью тысячами различных видов, зарегистрированных в , спустя сто лет с того времени, как извержение уничтожило на нём жизнь. Данные подтверждают, что положение сохраняется в гомеостазе в течение некоторого времени, при этом появление новых видов очень быстро приводит к быстрому исчезновению старых.

Случай с Кракатау и другими нарушенными или нетронутыми экосистемами показывает, что первоначальная колонизация пионерными видами осуществляется через стратегии воспроизведения, основанные на положительной обратной связи, при которых виды расселяются, производя на свет как можно больше потомства, но при этом практически не вкладываясь в успех каждого отдельного. В таких видах наблюдается стремительное развитие и столь же стремительный крах (например, через эпидемию). Когда экосистема приближается к климаксу, такие виды заменяются более сложными климаксовыми видами, которые через отрицательную обратную связь адаптируются к специфическим условиям окружающей их среды. Эти виды тщательно контролируются потенциальной ёмкостью экосистемы и следуют иной стратегии - произведению на свет меньшего потомства, в репродуктивный успех которого в условиях микросреды его специфической экологической ниши вкладывается больше энергии .

Развитие начинается с пионер-сообщества и заканчивается на климаксовом сообществе. Это климаксовое сообщество образуется, когда флора и фауна пришла в баланс с местной средой.

Подобные экосистемы формируют гетерархии , в которых гомеостаз на одном уровне способствует гомеостатическим процессам на другом комплексном уровне. К примеру, потеря листьев у зрелого тропического дерева даёт место для новой поросли и обогащает почву . В равной степени тропическое дерево уменьшает доступ света на низшие уровни и помогает предотвратить инвазию других видов. Но и деревья падают на землю и развитие леса зависит от постоянной смены деревьев, круговорота питательных веществ, осуществляемого бактериями , насекомыми , грибами . Схожим образом такие леса способствуют экологическим процессам - таким, как регуляция микроклиматов или гидрологических циклов экосистемы, а несколько разных экосистем могут взаимодействовать для поддержания гомеостаза речного дренажа в рамках биологического региона . Вариативность биорегионов так же играет роль в гомеостатической стабильности биологического региона, или биома .

Биологический гомеостаз

Гомеостаз выступает в роли фундаментальной характеристики живых организмов и понимается как поддержание внутренней среды в допустимых пределах.

Внутренняя среда организма включает в себя организменные жидкости - плазму крови, лимфу , межклеточное вещество и цереброспинальную жидкость . Сохранение стабильности этих жидкостей жизненно важно для организмов, тогда как её отсутствие приводит к повреждению генетического материала.

3)ткани, для которых характерно преимущественно или исключительно внутриклеточная регенерация(миокард и ганглиозные клетки центральной нервной системы)

В процессе эволюции сформировались 2 типа регенерации: физиологическая и репаративная.

Гомеостаз в организме человека

Разные факторы влияют на способность жидкостей организма поддерживать жизнь. В их числе такие параметры, как температура, солёность , кислотность и концентрация питательных веществ - глюкозы , различных ионов , кислорода , и отходов - углекислого газа и мочи . Так как эти параметры влияют на химические реакции , которые сохраняют организм живым, существуют встроенные физиологические механизмы для поддержания их на необходимом уровне.

Гомеостаз нельзя считать причиной процессов этих бессознательных адаптаций. Его следует воспринимать как общую характеристику многих нормальных процессов, действующих совместно, а не как их первопричину. Более того, существует множество биологических явлений , которые не подходят под эту модель - например, анаболизм .

Другие сферы

Понятие «гомеостаз» используется также и в других сферах.

Напишите отзыв о статье "Гомеостаз"

Отрывок, характеризующий Гомеостаз

В половине шестого Наполеон верхом ехал к деревне Шевардину.
Начинало светать, небо расчистило, только одна туча лежала на востоке. Покинутые костры догорали в слабом свете утра.
Вправо раздался густой одинокий пушечный выстрел, пронесся и замер среди общей тишины. Прошло несколько минут. Раздался второй, третий выстрел, заколебался воздух; четвертый, пятый раздались близко и торжественно где то справа.
Еще не отзвучали первые выстрелы, как раздались еще другие, еще и еще, сливаясь и перебивая один другой.
Наполеон подъехал со свитой к Шевардинскому редуту и слез с лошади. Игра началась.

Вернувшись от князя Андрея в Горки, Пьер, приказав берейтору приготовить лошадей и рано утром разбудить его, тотчас же заснул за перегородкой, в уголке, который Борис уступил ему.
Когда Пьер совсем очнулся на другое утро, в избе уже никого не было. Стекла дребезжали в маленьких окнах. Берейтор стоял, расталкивая его.
– Ваше сиятельство, ваше сиятельство, ваше сиятельство… – упорно, не глядя на Пьера и, видимо, потеряв надежду разбудить его, раскачивая его за плечо, приговаривал берейтор.
– Что? Началось? Пора? – заговорил Пьер, проснувшись.
– Изволите слышать пальбу, – сказал берейтор, отставной солдат, – уже все господа повышли, сами светлейшие давно проехали.
Пьер поспешно оделся и выбежал на крыльцо. На дворе было ясно, свежо, росисто и весело. Солнце, только что вырвавшись из за тучи, заслонявшей его, брызнуло до половины переломленными тучей лучами через крыши противоположной улицы, на покрытую росой пыль дороги, на стены домов, на окна забора и на лошадей Пьера, стоявших у избы. Гул пушек яснее слышался на дворе. По улице прорысил адъютант с казаком.
– Пора, граф, пора! – прокричал адъютант.
Приказав вести за собой лошадь, Пьер пошел по улице к кургану, с которого он вчера смотрел на поле сражения. На кургане этом была толпа военных, и слышался французский говор штабных, и виднелась седая голова Кутузова с его белой с красным околышем фуражкой и седым затылком, утонувшим в плечи. Кутузов смотрел в трубу вперед по большой дороге.
Войдя по ступенькам входа на курган, Пьер взглянул впереди себя и замер от восхищенья перед красотою зрелища. Это была та же панорама, которою он любовался вчера с этого кургана; но теперь вся эта местность была покрыта войсками и дымами выстрелов, и косые лучи яркого солнца, поднимавшегося сзади, левее Пьера, кидали на нее в чистом утреннем воздухе пронизывающий с золотым и розовым оттенком свет и темные, длинные тени. Дальние леса, заканчивающие панораму, точно высеченные из какого то драгоценного желто зеленого камня, виднелись своей изогнутой чертой вершин на горизонте, и между ними за Валуевым прорезывалась большая Смоленская дорога, вся покрытая войсками. Ближе блестели золотые поля и перелески. Везде – спереди, справа и слева – виднелись войска. Все это было оживленно, величественно и неожиданно; но то, что более всего поразило Пьера, – это был вид самого поля сражения, Бородина и лощины над Колочею по обеим сторонам ее.
Над Колочею, в Бородине и по обеим сторонам его, особенно влево, там, где в болотистых берегах Во йна впадает в Колочу, стоял тот туман, который тает, расплывается и просвечивает при выходе яркого солнца и волшебно окрашивает и очерчивает все виднеющееся сквозь него. К этому туману присоединялся дым выстрелов, и по этому туману и дыму везде блестели молнии утреннего света – то по воде, то по росе, то по штыкам войск, толпившихся по берегам и в Бородине. Сквозь туман этот виднелась белая церковь, кое где крыши изб Бородина, кое где сплошные массы солдат, кое где зеленые ящики, пушки. И все это двигалось или казалось движущимся, потому что туман и дым тянулись по всему этому пространству. Как в этой местности низов около Бородина, покрытых туманом, так и вне его, выше и особенно левее по всей линии, по лесам, по полям, в низах, на вершинах возвышений, зарождались беспрестанно сами собой, из ничего, пушечные, то одинокие, то гуртовые, то редкие, то частые клубы дымов, которые, распухая, разрастаясь, клубясь, сливаясь, виднелись по всему этому пространству.
Эти дымы выстрелов и, странно сказать, звуки их производили главную красоту зрелища.
Пуфф! – вдруг виднелся круглый, плотный, играющий лиловым, серым и молочно белым цветами дым, и бумм! – раздавался через секунду звук этого дыма.
«Пуф пуф» – поднимались два дыма, толкаясь и сливаясь; и «бум бум» – подтверждали звуки то, что видел глаз.
Пьер оглядывался на первый дым, который он оставил округлым плотным мячиком, и уже на месте его были шары дыма, тянущегося в сторону, и пуф… (с остановкой) пуф пуф – зарождались еще три, еще четыре, и на каждый, с теми же расстановками, бум… бум бум бум – отвечали красивые, твердые, верные звуки. Казалось то, что дымы эти бежали, то, что они стояли, и мимо них бежали леса, поля и блестящие штыки. С левой стороны, по полям и кустам, беспрестанно зарождались эти большие дымы с своими торжественными отголосками, и ближе еще, по низам и лесам, вспыхивали маленькие, не успевавшие округляться дымки ружей и точно так же давали свои маленькие отголоски. Трах та та тах – трещали ружья хотя и часто, но неправильно и бедно в сравнении с орудийными выстрелами.
Пьеру захотелось быть там, где были эти дымы, эти блестящие штыки и пушки, это движение, эти звуки. Он оглянулся на Кутузова и на его свиту, чтобы сверить свое впечатление с другими. Все точно так же, как и он, и, как ему казалось, с тем же чувством смотрели вперед, на поле сражения. На всех лицах светилась теперь та скрытая теплота (chaleur latente) чувства, которое Пьер замечал вчера и которое он понял совершенно после своего разговора с князем Андреем.
– Поезжай, голубчик, поезжай, Христос с тобой, – говорил Кутузов, не спуская глаз с поля сражения, генералу, стоявшему подле него.
Выслушав приказание, генерал этот прошел мимо Пьера, к сходу с кургана.
– К переправе! – холодно и строго сказал генерал в ответ на вопрос одного из штабных, куда он едет. «И я, и я», – подумал Пьер и пошел по направлению за генералом.
Генерал садился на лошадь, которую подал ему казак. Пьер подошел к своему берейтору, державшему лошадей. Спросив, которая посмирнее, Пьер взлез на лошадь, схватился за гриву, прижал каблуки вывернутых ног к животу лошади и, чувствуя, что очки его спадают и что он не в силах отвести рук от гривы и поводьев, поскакал за генералом, возбуждая улыбки штабных, с кургана смотревших на него.

Генерал, за которым скакал Пьер, спустившись под гору, круто повернул влево, и Пьер, потеряв его из вида, вскакал в ряды пехотных солдат, шедших впереди его. Он пытался выехать из них то вправо, то влево; но везде были солдаты, с одинаково озабоченными лицами, занятыми каким то невидным, но, очевидно, важным делом. Все с одинаково недовольно вопросительным взглядом смотрели на этого толстого человека в белой шляпе, неизвестно для чего топчущего их своею лошадью.
– Чего ездит посерёд батальона! – крикнул на него один. Другой толконул прикладом его лошадь, и Пьер, прижавшись к луке и едва удерживая шарахнувшуюся лошадь, выскакал вперед солдат, где было просторнее.
Впереди его был мост, а у моста, стреляя, стояли другие солдаты. Пьер подъехал к ним. Сам того не зная, Пьер заехал к мосту через Колочу, который был между Горками и Бородиным и который в первом действии сражения (заняв Бородино) атаковали французы. Пьер видел, что впереди его был мост и что с обеих сторон моста и на лугу, в тех рядах лежащего сена, которые он заметил вчера, в дыму что то делали солдаты; но, несмотря на неумолкающую стрельбу, происходившую в этом месте, он никак не думал, что тут то и было поле сражения. Он не слыхал звуков пуль, визжавших со всех сторон, и снарядов, перелетавших через него, не видал неприятеля, бывшего на той стороне реки, и долго не видал убитых и раненых, хотя многие падали недалеко от него. С улыбкой, не сходившей с его лица, он оглядывался вокруг себя.
– Что ездит этот перед линией? – опять крикнул на него кто то.
– Влево, вправо возьми, – кричали ему. Пьер взял вправо и неожиданно съехался с знакомым ему адъютантом генерала Раевского. Адъютант этот сердито взглянул на Пьера, очевидно, сбираясь тоже крикнуть на него, но, узнав его, кивнул ему головой.
– Вы как тут? – проговорил он и поскакал дальше.
Пьер, чувствуя себя не на своем месте и без дела, боясь опять помешать кому нибудь, поскакал за адъютантом.
– Это здесь, что же? Можно мне с вами? – спрашивал он.
– Сейчас, сейчас, – отвечал адъютант и, подскакав к толстому полковнику, стоявшему на лугу, что то передал ему и тогда уже обратился к Пьеру.
– Вы зачем сюда попали, граф? – сказал он ему с улыбкой. – Все любопытствуете?
– Да, да, – сказал Пьер. Но адъютант, повернув лошадь, ехал дальше.
– Здесь то слава богу, – сказал адъютант, – но на левом фланге у Багратиона ужасная жарня идет.
– Неужели? – спросил Пьер. – Это где же?
– Да вот поедемте со мной на курган, от нас видно. А у нас на батарее еще сносно, – сказал адъютант. – Что ж, едете?
– Да, я с вами, – сказал Пьер, глядя вокруг себя и отыскивая глазами своего берейтора. Тут только в первый раз Пьер увидал раненых, бредущих пешком и несомых на носилках. На том самом лужке с пахучими рядами сена, по которому он проезжал вчера, поперек рядов, неловко подвернув голову, неподвижно лежал один солдат с свалившимся кивером. – А этого отчего не подняли? – начал было Пьер; но, увидав строгое лицо адъютанта, оглянувшегося в ту же сторону, он замолчал.
Пьер не нашел своего берейтора и вместе с адъютантом низом поехал по лощине к кургану Раевского. Лошадь Пьера отставала от адъютанта и равномерно встряхивала его.
– Вы, видно, не привыкли верхом ездить, граф? – спросил адъютант.
– Нет, ничего, но что то она прыгает очень, – с недоуменьем сказал Пьер.
– Ээ!.. да она ранена, – сказал адъютант, – правая передняя, выше колена. Пуля, должно быть. Поздравляю, граф, – сказал он, – le bapteme de feu [крещение огнем].
Проехав в дыму по шестому корпусу, позади артиллерии, которая, выдвинутая вперед, стреляла, оглушая своими выстрелами, они приехали к небольшому лесу. В лесу было прохладно, тихо и пахло осенью. Пьер и адъютант слезли с лошадей и пешком вошли на гору.
– Здесь генерал? – спросил адъютант, подходя к кургану.
– Сейчас были, поехали сюда, – указывая вправо, отвечали ему.
Адъютант оглянулся на Пьера, как бы не зная, что ему теперь с ним делать.
– Не беспокойтесь, – сказал Пьер. – Я пойду на курган, можно?
– Да пойдите, оттуда все видно и не так опасно. А я заеду за вами.
Пьер пошел на батарею, и адъютант поехал дальше. Больше они не видались, и уже гораздо после Пьер узнал, что этому адъютанту в этот день оторвало руку.
Курган, на который вошел Пьер, был то знаменитое (потом известное у русских под именем курганной батареи, или батареи Раевского, а у французов под именем la grande redoute, la fatale redoute, la redoute du centre [большого редута, рокового редута, центрального редута] место, вокруг которого положены десятки тысяч людей и которое французы считали важнейшим пунктом позиции.
Редут этот состоял из кургана, на котором с трех сторон были выкопаны канавы. В окопанном канавами место стояли десять стрелявших пушек, высунутых в отверстие валов.
В линию с курганом стояли с обеих сторон пушки, тоже беспрестанно стрелявшие. Немного позади пушек стояли пехотные войска. Входя на этот курган, Пьер никак не думал, что это окопанное небольшими канавами место, на котором стояло и стреляло несколько пушек, было самое важное место в сражении.
Пьеру, напротив, казалось, что это место (именно потому, что он находился на нем) было одно из самых незначительных мест сражения.
Войдя на курган, Пьер сел в конце канавы, окружающей батарею, и с бессознательно радостной улыбкой смотрел на то, что делалось вокруг него. Изредка Пьер все с той же улыбкой вставал и, стараясь не помешать солдатам, заряжавшим и накатывавшим орудия, беспрестанно пробегавшим мимо него с сумками и зарядами, прохаживался по батарее. Пушки с этой батареи беспрестанно одна за другой стреляли, оглушая своими звуками и застилая всю окрестность пороховым дымом.
В противность той жуткости, которая чувствовалась между пехотными солдатами прикрытия, здесь, на батарее, где небольшое количество людей, занятых делом, бело ограничено, отделено от других канавой, – здесь чувствовалось одинаковое и общее всем, как бы семейное оживление.
Появление невоенной фигуры Пьера в белой шляпе сначала неприятно поразило этих людей. Солдаты, проходя мимо его, удивленно и даже испуганно косились на его фигуру. Старший артиллерийский офицер, высокий, с длинными ногами, рябой человек, как будто для того, чтобы посмотреть на действие крайнего орудия, подошел к Пьеру и любопытно посмотрел на него.
Молоденький круглолицый офицерик, еще совершенный ребенок, очевидно, только что выпущенный из корпуса, распоряжаясь весьма старательно порученными ему двумя пушками, строго обратился к Пьеру.
– Господин, позвольте вас попросить с дороги, – сказал он ему, – здесь нельзя.
Солдаты неодобрительно покачивали головами, глядя на Пьера. Но когда все убедились, что этот человек в белой шляпе не только не делал ничего дурного, но или смирно сидел на откосе вала, или с робкой улыбкой, учтиво сторонясь перед солдатами, прохаживался по батарее под выстрелами так же спокойно, как по бульвару, тогда понемногу чувство недоброжелательного недоуменья к нему стало переходить в ласковое и шутливое участие, подобное тому, которое солдаты имеют к своим животным: собакам, петухам, козлам и вообще животным, живущим при воинских командах. Солдаты эти сейчас же мысленно приняли Пьера в свою семью, присвоили себе и дали ему прозвище. «Наш барин» прозвали его и про него ласково смеялись между собой.
Одно ядро взрыло землю в двух шагах от Пьера. Он, обчищая взбрызнутую ядром землю с платья, с улыбкой оглянулся вокруг себя.
– И как это вы не боитесь, барин, право! – обратился к Пьеру краснорожий широкий солдат, оскаливая крепкие белые зубы.
– А ты разве боишься? – спросил Пьер.
– А то как же? – отвечал солдат. – Ведь она не помилует. Она шмякнет, так кишки вон. Нельзя не бояться, – сказал он, смеясь.
Несколько солдат с веселыми и ласковыми лицами остановились подле Пьера. Они как будто не ожидали того, чтобы он говорил, как все, и это открытие обрадовало их.
– Наше дело солдатское. А вот барин, так удивительно. Вот так барин!
– По местам! – крикнул молоденький офицер на собравшихся вокруг Пьера солдат. Молоденький офицер этот, видимо, исполнял свою должность в первый или во второй раз и потому с особенной отчетливостью и форменностью обращался и с солдатами и с начальником.

Тема 4.1. Гомеостаз

Гомеостаз (от греч. homoios - подобный, одинаковый и status - неподвижность) - это способность живых систем противостоять изменениям и сохранять постоянство состава и свойств биологических систем.

Термин «гомеостаз» предложил У. Кеннон в 1929 г. для характеристики состояний и процессов, обеспечивающих устойчивость организма. Идея о существовании физических механизмов, направленных на поддержание постоянства внутренней среде, была высказана еще во второй половине XIX века К. Бернаром, который рассматривал стабильность физико-химических условий во внутренней среде как основу свободы и независимости живых организмов в непрерывно меняющейся внешней среде. Явление гомеостаза наблюдается на разных уровнях организации биологических систем.

Общие закономерности гомеостаза. Способность сохранять гомеостаз - одно из важнейших свойств живой системы, находящейся в состоянии динамического равновесия с условиями внешней среды.

Нормализация физиологических показателей осуществляется на основе свойства раздражимости. Способность к поддержанию гомеостаза неодинакова у различных видов. По мере усложнения организмов эта способность прогрессирует, делая их в большей степени независимыми от колебаний внешних условий. Особенно это проявляется у высших животных и человека, имеющих сложные нервные, эндокринные и иммунные механизмы регуляции. Влияние среды на организм человека в основном является не прямым, а опосредованным благодаря созданию им искусственной среды, успехам техники и цивилизации.

В системных механизмах гомеостаза действует кибернетический принцип отрицательной обратной связи: при любом возмущающем воздействии происходит включение нервных и эндокринных механизмов, которые тесно взаимосвязаны.

Генетический гомеостаз на молекулярно-генетическом, клеточном и организменном уровнях направлен на поддержание сбалансированной системы генов, содержащей всю биологическую информацию организма. Механизмы онтогенетического (организменного) гомеостаза закреплены в исторически сложившемся генотипе. На популяционновидовом уровне генетический гомеостаз - это способность популяции поддерживать относительную стабильность и целостность наследственного материала, которые обеспечиваются процессами редукционного деления и свободным скрещиванием особей, что способствует сохранению генетического равновесия частот аллелей.

Физиологический гомеостаз связан с формированием и непрестанным поддержанием в клетке специфических физико-химических условий. Постоянство внутренней среды многоклеточных организмов поддерживается системами дыхания, кровообращения, пищеварения, выделения и регулируется нервной и эндокринной системами.

Структурный гомеостаз основывается на механизмах регенерации, обеспечивающих морфологическое постоянство и целостность биологической системы на разных уровнях организации. Это выражается в восстановлении внутриклеточных и органных структур, путем деления и гипертрофии.

Нарушение механизмов, лежащих в основе гомеостатических процессов, рассматривается как «болезнь» гомеостаза.

Изучение закономерностей гомеостаза человека имеет большое значение для выбора эффективных и рациональных методов лечения многих заболеваний.

Цель. Иметь представление о гомеостазе как свойстве живого, обеспечивающем самоподдержание стабильности организма. Знать основные виды гомеостаза и механизмы его поддержания. Знать основные закономерности физиологической и репаративной регенерации и стимулирующие ее факторы, значение регенерации для практической медицины. Знать биологическую сущность трансплантации и ее практическое значение.

Работа 2. Генетический гомеостаз и его нарушения

Изучите и перепишите таблицу.

Окончание табл.

Способы поддержания генетического гомеостаза

Механизмы нарушений генетического гомеостаза

Результат нарушений генетического гомеостаза

Репарация ДНК

1. Наследственное и ненаследственное повреждение репаративной системы.

2. Функциональная недостаточность репаративной системы

Генные мутации

распределение наследственного материала при митозе

1. Нарушение формирования веретена деления.

2. Нарушение расхождения хромосом

1. Хромосомные аберрации.

2. Гетероплоидия.

3. Полиплоидия

Иммунитет

1. Иммунодефицит наследственный и приобретенный.

2. Функциональная недостаточность иммунитета

Сохранение атипичных клеток, приводящее к злокачественному росту, снижению резистентности к чужеродному агенту

Работа 3. Механизмы репарации на примере пострадиационного восстановления структуры ДНК

Репарация или исправление поврежденных участков одной из цепей ДНК рассматривается как ограниченная репликация. Наиболее изучен процесс репарации при повреждении цепи ДНК ультрафиолетовым (УФ) излучением. В клетках существуют несколько ферментных систем репарации, сформировавшихся в ходе эволюции. Поскольку все организмы развились и существуют в условиях УФ-облучения, то в клетках имеется отдельная система световой репарации, наиболее изученная в настоящее время. При повреждении молекулы ДНК УФ-лучами образуются тимидиновые димеры, т.е. «сшивки» между соседними тиминовыми нуклеотидами. Эти димеры не могут выполнять функцию матрицы, поэтому их исправляют ферменты световой репарации, имеющиеся в клетках. Эксцизионная репарация восстанавливает поврежденные участки как УФ-облучением, так и другими факторами. Эта система репарации имеет несколько ферментов: репарационные эндонуклеаза

и экзонуклеаза, ДНК-полимераза, ДНК-лигаза. Пострепликативная репарация является неполной, так как идет «в обход», и поврежденный участок из молекулы ДНК не удаляется. Изучите механизмы репарации на примере фотореактивации, эксцизионной репарации и пострепликативной репарации (рис. 1).

Рис. 1. Репарация

Работа 4. Формы защиты биологической индивидуальности организма

Изучите и перепишите таблицу.

Формы защиты

Биологическая сущность

Неспецифические факторы

Естественная индивидуальная неспецифическая устойчивость к чужеродным агентам

Защитные барьеры

организма: кожа, эпителий, гематолимфатический, печеночный, гематоэнцефалический, гематоофтальмический, гематотестикулярный, гематофолликулярный, гематосаливарный

Препятствуют проникновению в организм и органы чужеродных агентов

Неспецифическая клеточная защита (клетки крови и соединительной ткани)

Фагоцитоз, инкапсулирование, образование клеточных агрегатов, коагуляция плазмы

Неспецифическая гуморальная защита

Действие на патогенные агенты неспецифических веществ в выделениях кожных желез, слюне, слезной жидкости, желудочном и кишечном соке, крови (интерферон) и т.д.

Иммунитет

Специализированные реакции иммунной системы на генетически чужеродные агенты, живые организмы, злокачественные клетки

Конституциональный иммунитет

Генетически предопределенная устойчивость отдельных видов, популяций и особей к возбудителям определенных заболеваний или агентам молекулярной природы, обусловленная несоответствием чужеродных агентов и рецепторов клеточных мембран, отсутствием в организме определенных веществ, без которых чужеродный агент не может существовать; наличие в организме ферментов, уничтожающих чужеродный агент

Клеточный

Появление повышенного количества избирательно реагирующих с данным антигеном Т-лимфоцитов

Гуморальный

Образование циркулирующих с кровью специфических антител к определенным антигенам

Работа 5. Гематосаливарный барьер

Слюнные железы обладают способностью к избирательной транспортировке веществ из крови в слюну. Одни из них выделяются со слюной в большей концентрации, а другие в меньшей концентрации, чем в плазме крови. Переход соединений из крови в слюну осуществляется так же, как и транспорт через любой гисто-гематолический барьер. Высокая селективность переносимых веществ из крови в слюну позволяет выделять гемато-саливарный барьер.

Разберите процесс секреции слюны в ацинарных клетках слюнной железы на рис. 2.

Рис. 2. Секреция слюны

Работа 6. Регенерация

Регенерация - это совокупность процессов, обеспечивающих восстановление биологических структур; она является механизмом поддержания как структурного, так и физиологического гомеостаза.

Физиологическая регенерация осуществляет восстановление структур, изношенных в процессе нормальной жизнедеятельности организма. Репаративная регенерация - это восстановление структуры после травмы или после патологического процесса. Способность к регенера-

ции различается как у разных структур, так и у разных видов живых организмов.

Восстановление структурного и физиологического гомеостаза может быть достигнуто путем пересадки органов или тканей от одного организма к другому, т.е. путем трансплантации.

Заполните таблицу, используя материал лекций и учебника.

Работа 7. Трансплантация как возможность восстановления структурного и физиологического гомеостаза

Трансплантация - замещение утраченных или поврежденных тканей и органов собственными либо взятыми из другого организма.

Имплантация - трансплантация органов из искусственных материалов.

Изучите и перепишите таблицу в рабочую тетрадь.

Вопросы для самоподготовки

1. Определите биологическую сущность гомеостаза и назовите его виды.

2. На каких уровнях организации живого поддерживается гомеостаз?

3. В чем заключается генетический гомеостаз? Раскройте механизмы его поддержания.

4. Какова биологическая сущность иммунитета? 9. Что такое регенерация? Виды регенерации.

10.На каких уровнях структурной организации организма проявляется регенерационный процесс?

11. Что представляет собой физиологическая и репаративная регенерация (определение, примеры)?

12. Каковы виды репаративной регенерации?

13. Каковы способы репаративной регенерации?

14. Что является материалом для регенерационного процесса?

15. Каким способом осуществляется процесс репаративной регенерации у млекопитающих и у человека?

16. Как осуществляется регуляция репаративного процесса?

17. Каковы возможности стимуляции восстановительной способности органов и тканей у человека?

18. Что такое трансплантация и каково ее значение для медицины?

19. Что такое изотрансплантация и в чем ее отличие от алло- и ксенотрансплантации?

20. Каковы проблемы и перспективы пересадки органов?

21. Какие существуют методы преодоления тканевой несовместимости?

22. В чем заключается явление тканевой толерантности? Каковы механизмы ее достижения?

23. В чем преимущества и недостатки имплантации искусственных материалов?

Тестовые задания

Выберите один правильный ответ.

1. НА ПОПУЛЯЦИОННО-ВИДОВОМ УРОВНЕ ПОДДЕРЖИВАЕТСЯ ГОМЕОСТАЗ:

1. Структурный

2. Генетический

3. Физиологический

4. Биохимический

2. ФИЗИОЛОГИЧЕСКАЯ РЕГЕНЕРАЦИЯ ОБЕСПЕЧИВАЕТ:

1. Формирование утраченного органа

2. Самообновление на тканевом уровне

3. Восстановление тканей в ответ на повреждение

4. Восстановление части утраченного органа

3. РЕГЕНЕРАЦИЯ ПОСЛЕ УДАЛЕНИЯ ДОЛИ ПЕЧЕНИ

У ЧЕЛОВЕКА ИДЕТ ПУТЕМ:

1. Компенсаторной гипертрофии

2. Эпиморфоза

3. Морфолаксиса

4. Регенерационной гипертрофии

4. ПЕРЕСАДКА ТКАНЕЙ И ОРГАНОВ ОТ ДОНОРА

К РЕЦИПИЕНТУ ЭТОГО ЖЕ ВИДА:

1. Ауто- и изотрансплантация

2. Алло- и гомотрансплантация

3. Ксено- и гетеротрансплантация

4. Имплантация и ксенотрансплантация

Выберите несколько правильных ответов.

5. К НЕСПЕЦИФИЧЕСКИМ ФАКТОРАМ ИММУННОЙ ЗАЩИТЫ У МЛЕКОПИТАЮЩИХ ОТНОСЯТСЯ:

1. Барьерные функции эпителия кожи и слизистых оболочек

2. Лизоцим

3. Антитела

4. Бактерицидные свойства желудочного и кишечного сока

6. КОНСТИТУЦИОННЫЙ ИММУНИТЕТ ОБУСЛОВЛЕН:

1. Фагоцитозом

2. Отсутствием взаимодействия между клеточными рецепторами и антигеном

3. Антителообразованием

4. Ферментами, разрушающими чужеродный агент

7. ПОДДЕРЖАНИЕ ГЕНЕТИЧЕСКОГО ГОМЕОСТАЗА НА МОЛЕКУЛЯРНОМ УРОВНЕ ОБУСЛОВЛЕНО:

1. Иммунитетом

2. Репликацией ДНК

3. Репарацией ДНК

4. Митозом

8. ДЛЯ РЕГЕНЕРАЦИОННОЙ ГИПЕРТРОФИИ ХАРАКТЕРНО:

1. Восстановление первоначальной массы поврежденного органа

2. Восстановление формы поврежденного органа

3. Увеличение количества и размеров клеток

4. Образование рубца на месте травмы

9. У ЧЕЛОВЕКА ОРГАНАМИ ИММУННОЙ СИСТЕМЫ ЯВЛЯЮТСЯ:

2. Лимфатические узлы

3. Пейеровы бляшки

4. Костный мозг

5. Сумка Фабрициуса

Установите соответствие.

10. ТИПЫ И СПОСОБЫ РЕГЕНЕРАЦИИ:

1. Эпиморфоз

2. Гетероморфоз

3. Гомоморфоз

4. Эндоморфоз

5. Вставочный рост

6. Морфолаксис

7. Соматический эмбриогенез

БИОЛОГИЧЕСКАЯ

СУЩНОСТЬ:

а) Атипичная регенерация

б) Отрастание от раневой поверхности

в) Компенсаторная гипертрофия

г) Регенерация организма из отдельных клеток

д) Регенерационная гипертрофия

е) Типичная регенерация ж)Перестройка оставшейся части органа

з) Регенерация сквозных дефектов

Литература

Основная

Биология / Под ред. В.Н. Ярыгина. - М.: Высшая школа, 2001. -

С. 77-84, 372-383.

Слюсарев А.А., Жукова С.В. Биология. - Киев: Высшая школа,

1987. - С. 178-211.


Гомеостаз - поддержание внутренней среды организма

Мир вокруг нас постоянно изменяется. Зимние ветры заставляют нас надевать теплое платье и перчатки, а центральное отопление побуждает снимать их. Летнее солнце уменьшает потребность в сохранении тепла, по крайней мере до тех пор, пока эффективная работа кондиционера не приведет к противоположному результату. И все-таки независимо от температуры окружающей среды индивидуальная температура тела у знакомых вам здоровых людей вряд ли будет различаться намного больше, чем на одну десятую градуса. У человека и других теплокровных животных температура внутренних областей тела удерживается на постоянном уровне где-то около 37° С, хотя она может несколько подниматься и опускаться в связи с суточным ритмом.

Большинство людей питается по-разному. Одни предпочитают хороший завтрак, легкий ленч и плотный обед с обязательным десертом. Другие не едят почти целый день, но в полдень любят хорошенько перекусить и немного вздремнуть. Одни только и делают, что жуют, других еда как будто вообще не волнует. И тем не менее если измерить содержание сахара в крови у учеников вашего класса, то оно у всех окажется близким к 0,001 г (1 мг) на один миллилитр крови, несмотря на большую разницу в пищевом рационе и в распределении приемов пищи.

Точное регулирование температуры тела и содержания глюкозы в крови - это всего лишь два примера важнейших функций, находящихся под контролем нервной системы. Состав жидкостей, окружающих все наши клетки, непрерывно регулируется, что позволяет обеспечить его поразительное постоянство.

Поддержание постоянства внутренней среды организма называется гомеостазом (homeo - такой же, сходный; stasis -стабильность, равновесие). Главную ответственность за гомеостатическую регуляцию несут вегетативный (автономный) и кишечный отделы периферической нервной системы, а также центральная нервная система, отдающая организму приказы через гипофиз и другие эндокринные органы. Действуя совместно, эти системы согласовывают потребности тела с условиями окружающей среды. (Если это утверждение покажется вам знакомым, вспомните, что точно такими же словами мы охарактеризовали главную функцию мозга.)

Французский физиолог Клод Бернар, живший в XIX веке и целиком посвятивший себя изучению процессов пищеварения и регуляции кровотока, рассматривал жидкости тела как «внутреннюю среду» (milieu interne ). У разных организмов концентрация определенных солей и нормальная температура могут быть несколько различными, но в пределах вида внутренняя среда индивидуумов соответствует характерным для этого вида стандартам. Допускаются лишь кратковременные и не очень большие отклонения от этих стандартов, иначе организм не может оставаться здоровым и способствовать выживанию вида. Уолтер Б. Кэннон, крупнейший американский физиолог середины нашего столетия, расширил концепцию Бернара о внутренней среде. Он считал, что независимость индивидуума от непрерывных изменений внешних условий обеспечивается работой гомеостатических механизмов , которые поддерживают постоянство внутренней среды.

Способность организма справляться с требованиями, выдвигаемыми окружающей средой, сильно варьирует от вида к виду. Человек, использующий в дополнение к внутренним механизмам гомеостаза сложные типы поведения, по-видимому, обладает наибольшей независимостью от внешних условий. Тем не менее многие животные превосходят его в определенных видоспецифических возможностях. Например, полярные медведи более устойчивы к холоду; некоторые виды пауков и ящериц, живущие в пустынях, лучше переносят жару; верблюды могут дольше обходиться без воды. В этой главе мы рассмотрим ряд структур, позволяющих нам обрести некоторую долю независимости от меняющихся физических условий внешнего мира. Мы поближе познакомимся также с регуляторными механизмами, которые поддерживают постоянство нашей внутренней среды.

Астронавты облачаются в специальные костюмы (скафандры), которые позволяют при работе в среде, близкой к вакууму, сохранять нормальную температуру тела, достаточное напряжение кислорода в крови и кровяное давление. Специальные датчики, вмонтированные в эти костюмы, регистрируют концентрацию кислорода, температуру тела, показатели сердечной деятельности и сообщают эти данные компьютерам космического корабля, а те в свою очередь - компьютерам наземного контроля. Компьютеры управляемого космического аппарата могут справиться практически с любой из предсказуемых ситуаций, касающихся потребностей организма. Если возникает какая-либо непредвиденная проблема, к ее решению подключаются компьютеры, находящиеся на Земле, которые и посылают новые команды непосредственно приборам скафандра.
В организме регистрацию сенсорных данных и местный контроль осуществляет вегетативная нервная система при участии эндокринной системы, которая берет на себя функцию всеобщей координации.

Вегетативная нервная система

Некоторые общие принципы организации сенсорных и двигательных систем весьма пригодятся нам при изучении систем внутренней регуляции. Все три отдела вегетативной (автономной) нервной системы имеют «сенсорные » и «двигательные » компоненты. В то время как первые регистрируют показатели внутренней среды, вторые усиливают или тормозят деятельность тех структур, которые осуществляют сам процесс регуляции.

Внутримышечные рецепторы наряду с рецепторами, расположенными в сухожилиях и некоторых других местах, реагируют на давление и растяжение. Все вместе они составляют особого рода внутреннюю сенсорную систему, которая помогает контролировать наши движения.
Рецепторы, участвующие в гомеостазе, действуют иным способом: они воспринимают изменения в химическом составе крови или колебания давления в сосудистой системе и в полых внутренних органах, таких как пищеварительный тракт и мочевой пузырь. Эти сенсорные системы, собирающие информацию о внутренней среде, по своей организации очень сходны с системами, воспринимающими сигналы с поверхности тела. Их рецепторные нейроны образуют первые синаптические переключения внутри спинного мозга. По двигательным путям вегетативной системы идут команды к органам, непосредственно регулирующим внутреннюю среду . Эти пути начинаются со специальных вегетативных преганглионарных нейронов спинного мозга. Такая организация несколько напоминает организацию спинальною уровня двигаательной системы.

Основное внимание в згой главе будет уделено тем двигательным компонентам вегетативной системы, которые иннервируют мускулатуру сердца, кровеносных сосудов и кишок, вызывая ее сокращение или расслабление. Такие же волокна иннервируют и железы, вызывая процесс секреции.

Вегетативная нервная система состоит из двух больших отделов симпатического и парасимпатического . Оба отдела имеют одну структурную особенность, с которой мы раньше не сталкивались: нейроны, управляющие мускулатурой внутренних органов и железами, лежат за пределами центральной нервной системы , образуя небольшие инкапсулированные скопления клеток, называемые ганглиями . Таким образом, в вегетативной нервной системе имеется дополнительное звено между спинным мозгом и концевым рабочим органом (эффектором).

Вегетативные нейроны спинного мозга объединяют сенсорную информацию, поступающую от внутренних органов и других источников. На этой основе они затем регулируют активность нейронов вегетативных ганглиев . Связи между ганглиями и спинным мозгом называются преганглионарными волокнами . Нейромедиатор, используемый для передачи импульсов от спинною мозга к нейронам ганглиев как в симпатическом, так и в парасимпатическом отделах, - это почти всегда ацетилхолин , тот же медиатор, с помощью которого мотонейроны спинного мозга непосредственно управляют скелетными мышцами. Так же как и в волокнах, иннервирующих скелетную мускулатуру, действие ацетилхолина может усиливаться в присутствии никотина и блокироваться кураре. Аксоны, идущие от нейронов автономных ганглиев , или постганглионарные волокна , затем направляются к органам-мишеням, образуя там много разветвлений.

Симпатический и парасимпатический отделы вегетативной нервной системы различаются между собой
1) по уровням, на которых преганглионарные волокна выходят из спинного мозга;
2) по близости расположения ганглиев к органам-мишеням;
3) по нейромедиатору, который используют постганглионарные нейроны для регулирования функций этих органов-мишеней.
Эти особенности мы сейчас и рассмотрим.

Симпатическая нервная система

В симпатической системе преганглионарные волокна выходят из грудного и поясничного отделов спинного мозга . Ее ганглии расположены довольно близко к спинному мозгу, и к органам-мишеням от них идут очень длинные постганглионарные волокна (см. рис. 63). Главный медиатор симпатических нервов - норадреналин , один из катехоламинов, который служит также медиатором и в центральной нервной системе.

Рис. 63. Симпатический и парасимпатический отделы вегетативной нервной системы, органы, которые они иннервируют, и их воздействие на каждый орган.

Чтобы понять, на какие органы действует симпатическая нервная система, проще всего представить себе, что происходит с возбужденным животным, готовым к реакции типа «борьбы или бегства».
Зрачки расширяются, чтобы пропускать больше света; частота сокращений сердца возрастает, и каждое сокращение становится более мощным, что ведет к усилению общего кровотока. Кровь отливает от кожи и внутренних органов к мышцам и мозгу. Моторика желудочно-кишечной системы ослабевает, процессы пищеварения замедляются. Мышцы, расположенные вдоль воздушных путей, ведущих к легким, расслабляются, что позволяет увеличить частоту дыхания и усилить газообмен. Клетки печени и жировой ткани отдают в кровь больше глюкозы и жирных кислот - высокоэнергетического топлива, а поджелудочная железа получает команду вырабатывать меньше инсулина. Это позволяет мозгу получать большую долю глюкозы, циркулирующей в кровяном русле, так как в отличие от других органов мозг не требует инсулина для утилизации сахара крови. Медиатором симпатической нервной системы, осуществляющей все эти изменения, служит норадреналин.

Существует дополнительная система, которая оказывает еще более генерализованное воздействие, чтобы вернее обеспечить все эти изменения. На верхушках почек сидят, как два небольших колпачка, надпочечники . В их внутренней части - мозговом веществе - имеются особые клетки, иннервируемые преганглионарными симпатическими волокнами. Эти клетки в процессе эмбрионального развития образуются из тех же клеток нервного гребня, из которых формируются симпатические ганглии. Таким образом, мозговое вещество - это компонент симпатической нервной системы. При активации преганглионарными волокнами клетки мозгового вещества выделяют свои собственные катехоламины (норадреналин и адреналин) прямо в кровь для доставки к органам-мишеням (рис. 64). Циркулирующие медиаторы-гормоны - служат примером того, как осуществляется регуляция эндокринными органами (см. с. 89).

Парасимпатическая нервная система

В парасимпатическом отделе преганглионарные волокна идут от ствола головного мозга («черепной компонент») и от нижних, крестцовых сегментов спинного мозга (см. выше рис. 63). Они образуют, в частности, очень важный нервный ствол, называемый блуждающим нервом , многочисленные ветви которого осуществляют всю парасимпатическую иннервацию сердца, легких и кишечного тракта. (Блуждающий нерв передает также сенсорную информацию от этих органов обратно в центральную нервную систему.) Преганглионарные парасимпатические аксоны очень длинны, так как их ганглии , как правило, располагаются поблизости или внутри тех тканей, которые они иннервируют .

В окончаниях волокон парасимпатической системы используется медиатор ацетилхолин . Реакция соответствующих клеток-мишеней на ацетилхолин нечувствительна к действию никотина или кураре. Вместо этого ацетилхолиновые рецепторы активируются мускарином и блокируются атропином.

Преобладание парасимпатической активности создает условия для «отдыха и восстановления » организма. В своем крайнем проявлении общий характер парасимпатической активации напоминает то состояние покоя, которое наступает после сытной еды. Повышенный приток крови к пищеварительному тракту ускоряет продвижение пищи через кишечник и усиливает секрецию пищеварительных ферментов. Частота и сила сердечных сокращений снижаются, зрачки сужаются, просвет дыхательных путей уменьшается, а образование слизи в них возрастает. Мочевой пузырь сжимается. Взятые вместе, эти изменения возвращают организм в то мирное состояние, которое предшествовало реакции типа «борьбы или бегства». (Все это представлено на рис. 63; см. также гл. 6.)

Сравнительная характеристика отделов вегетативной нервной системы

Симпатическая система с ее чрезвычайно длинными постганглионарными волокнами сильно отличается от парасимпатической, в которой, наоборот, длиннее преганглионарные волокна, а ганглии расположены вблизи или внутри органов-мишеней. Многие внутренние органы, такие как легкие, сердце, слюнные железы, мочевой пузырь, гонады, получают иннервацию от обоих отделов вегетативной системы (имеют, как говорят, «двойную иннервацию »). Другие ткани и органы, например артерии мышц, получают только симпатическую иннервацию. В целом можно сказать, что два отдела работают попеременно : в зависимости от деятельности организма и от команд высших вегетативных центров доминирует то один, то другой их них.

Эта характеристика, однако, не совсем верна. Обе системы постоянно находятся в состоянии той или иной степени активности . Тот факт, что такие органы-мишени, как сердце или радужная оболочка глаза, могут реагировать на импульсы, идущие от обоих отделов, попросту отражает их взаимодополняющую роль. Например, когда вы сильно сердитесь, у вас поднимается кровяное давление, которое возбуждает соответствующие рецепторы, расположенные в сонных артериях. Эти сигналы воспринимает интегрирующий центр сердечно-сосудистой системы, находящийся в нижней части ствола мозга и известный под названием ядра одиночного тракта. Возбуждение этого центра активирует преганглионарные парасимпатические волокна блуждающего нерва, что приводит к уменьшению частоты и силы сердечных сокращений. Одновременно под влиянием того же координирующего сосудистого центра происходит угнетение симпатической активности, противодействующее повышению кровяного давления.

Насколько существенно функционирование каждого из отделов для адаптивных реакций? Как это ни удивительно, не только животные, но и люди могут переносить почти полное выключение симпатической нервной системы без видимых дурных последствий. Такое выключение рекомендуется при некоторых формах стойкой гипертонии.

А вот без парасимпатической нервной системы обойтись не так-то просто . Люди, перенесшие подобную операцию и оказавшиеся вне охранительных условий больницы или лаборатории, очень плохо адаптируются к окружающей среде. Они не могут регулировать температуру тела при воздействии жары или холода; при кровопотере у них нарушается регуляция кровяного давления, а при любой интенсивной мышечной нагрузке быстро развивается утомление.

Диффузная нервная система кишечника

Недавние исследования выявили существование третьего важного отдела автономной нервной системы - диффузной нервной системы кишечника . Этот отдел ответствен за иннервацию и координацию органов пищеварения. Его работа независима от симпатической и парасимпатической систем, но может видоизменяться под их влиянием. Это дополнительное звено, которое связывает вегетативные постганглионарные нервы с железами и мускулатурой желудочно-кишечного тракта.

Ганглии этой системы иннервируют стенки кишок. Аксоны, идущие от клеток этих ганглиев, вызывают сокращения кольцевой и продольной мускулатуры, проталкивающие пищу через желудочно-кишечный тракт, - процесс, называемый перистальтикой. Таким образом, эти ганглии определяют особенности локальных перистальтических движений. Когда пищевая масса находится внутри кишки, она слегка растягивает ее стенки, что вызывает сужение участка, расположенного чуть выше по ходу кишки, и расслабление участка, находящегося чуть ниже. В результате пищевая масса проталкивается дальше. Однако под действием парасимпатических или симпатических нервов активность кишечных ганглиев может изменяться. Активация парасимпатической системы усиливает перистальтику, а симпатической - ослабляет ее.

Медиатором, возбуждающим гладкую мускулатуру кишечника, служит ацетилхолин. Однако тормозящие сигналы, ведущие к расслаблению, передаются, по-видимому, различными веществами, из которых изучены лишь немногие. Среди нейромедиаторов кишечника имеются по меньшей мере три, которые действуют и в центральной нервной системе: соматостатин (см. ниже), эндорфины и вещество Р (см. гл. 6).

Центральная регуляция функций вегетативной нервной системы

Центральная нервная система осуществляет контроль над вегетативной системой в гораздо меньшей степени, чем над сенсорной или скелетной двигательной системой. Области мозга, которые больше всего связаны с вегетативными функциями, - это гипоталамус и ствол мозга , в особенности та его часть, которая расположена прямо над спинным мозгом, - продолговатый мозг. Именно из этих областей идут основные проводящие пути к симпатическим и парасимпатическим преганглионарным автономным нейронам на спинальном уровне.

Гипоталамус. Гипоталамус - это одна из областей мозга, общая структура и организация которой более или менее сходна у представителей различных классов позвоночных животных.

В целом принято считать, что гипоталамус - это средоточие висцеральных интегративных функций. Сигналы от нейронных систем гипоталамуса непосредственно поступают в сети, которые возбуждают преганглионарные участки вегетативных нервных путей. Кроме того, эта область мозга осуществляет прямой контроль над всей эндокринной системой через посредство специфических нейронов, регулирующих секрецию гормонов передней доли гипофиза, а аксоны других гипоталамических нейронов оканчиваются в задней доле гипофиза. Здесь эти окончания выделяют медиаторы, которые циркулируют в крови как гормоны: 1) вазопрессин , повышающий кровяное давление в экстренных случаях, когда происходит потеря жидкости или крови; он также уменьшает выделение воды с мочой (поэтому вазопрессин называют еще антидиуретическим гормоном); 2) окситоцин , стимулирующий сокращения матки на завершающей стадии родов.

Рис. 65. Гипоталамус и гипофиз. Схематически показаны основные функциональные зоны гипоталамуса.

Хотя среди скоплений гипоталамических нейронов имеется несколько четко отграниченных ядер, большая часть гипоталамуса представляет собой совокупность зон с нерезкими границами (рис. 65). Однако в трех зонах имеются достаточно выраженные ядра. Мы рассмотрим сейчас функции этих структур.

1. Перивентрикулярная зона непосредственно примыкает к третьему мозговому желудочку, который проходит через центр гипоталамуса. Выстилающие желудочек клетки передают нейронам перивентрикулярной зоны информацию о важных внутренних параметрах, которые могут требовать регуляции, - например, о температуре, концентрации солей, уровнях гормонов, секретируемых щитовидной железой, надпочечниками или гонадами в соответствии с инструкциями от гипофиза.

2. Медиальная зона содержит большинство проводящих путей, с помощью которых гипоталамус осуществляет эндокринный контроль через гипофиз. Весьма приближенно можно сказать, что клетки перивентрикулярной зоны контролируют действительное выполнение команд, отданных гипофизу клетками медиальной зоны.

3. Через клетки латеральной зоны осуществляется контроль над гипоталамусом со стороны более высоких инстанций коры большого мозга и лимбической системы. Сюда же поступает сенсорная информация из центров продолговатого мозга, координирующих дыхательную и сердечно-сосудистую деятельность. Латеральная зона - это то место, где высшие мозговые центры могут вносить коррективы в реакции гипоталамуса на изменения внутренней среды. В коре, например, происходит сопоставление информации, поступающей из двух источников - внутренней и внешней среды . Если, скажем, кора сочтет, что время и обстоятельства не подходят для принятия пищи, донесение органов чувств о низком содержании сахара в крови и пустом желудке будет отложено в сторону до более благоприятного момента Игнорирование гипоталамуса со стороны лимбической системы менее вероятно . Скорее эта система может добавить эмоциональную и мотивационную окраску к интерпретации внешних сенсорных сигналов или же сравнить представление об окружающем, основанное на этих сигналах, с аналогичными ситуациями, имевшими место в прошлом.

Вместе с кортикальным и лимбическим компонентами гипоталамус выполняет также множество рутинных интегрирующих действий, причем на протяжении значительно более длительных периодов времени, чем при осуществлении кратковременных регуляторных функций. Гипоталамус заранее «знает», какие потребности возникнут у организма при нормальном суточном ритме жизни. Он, например, приводит эндокринную систему в полную готовность к действию, как только мы просыпаемся. Он также следит за гормональной активностью яичников на протяжении менструального цикла; принимает меры, подготавливающие матку к прибытию оплодотворенного яйца. У перелетных птиц и у млекопитающих, впадающих в зимнюю спячку, гипоталамус с его способностью определять длину светового дня координирует жизнедеятельность организма во время циклов, длящихся несколько месяцев. (Об этих аспектах централизованной регуляции внутренних функций будет говориться в главах 5 и 6.)

Продолговатый мозг (таламус и гипоталамус)

Гипоталамус составляет менее 5% от всей массы мозга. Однако в этом небольшом количестве ткани содержатся центры, которые поддерживают все функции организма, за исключением спонтанных дыхательных движений, регуляции кровяного давления и ритма сердца. Эти последние функции зависят от продолговатого мозга (см. рис. 66). При черепно-мозговых травмах так называемая «смерть мозга» наступает тогда, когда исчезают все признаки электрической активности коры и утрачивается контроль со стороны гипоталамуса и продолговатого мозга, хотя с помощью искусственного дыхания еще можно поддерживать достаточное насыщение циркулирующей крови кислородом.

продолжение
- -

2. Учебные цели:

Знать сущность гомеостаза, физиологические механизмы поддержания гомеостаза, основы регуляции гомеостаза.

Изучить основные виды гомеостаза. Знать возрастные особенности гомеостаза

3. Вопросы для самоподготовки к освоению данной темы:

1) Определение понятия гомеостаз

2) Виды гомеостаза.

3) Генетический гомеостаз

4) Структурный гомеостаз

5) Гомеостаз внутренней среды организма

6) Иммунологический гомеостаз

7) Механизмы регуляции гомеостаза: нейрогуморальный и эндокринный.

8) Гормональная регуляция гомеостаза.

9) Органы, участвующие в регуляции гомеостаза

10) Общий принцип гомеостатических реакций

11) Видовая специфичность гомеостаза.

12) Возрастные особенности гомеостаза

13) Патологические процессы, сопровождающиеся нарушением гомеостаза.

14) Коррекция гомеостаза организма – главная задача врача.

__________________________________________________________________

4. Вид занятия: внеаудиторное

5. Продолжительность занятия – 3 часа.

6. Оснащение. Электронная презентация «Лекции по биологии», таблицы, муляжи

Гомеостаз (гр. homoios - равный, stasis -состояние) - свойство организма поддерживать постоянство внутренней среды и основные черты присущей ему организации, несмотря на изменчивость параметров внешней среды и действие внутренних возмущающих факторов.

Гомеостаз каждого индивидуума специфичен и обусловлен его генотипом.

Организм - открытая динамичная система. Поток веществ и энергии, наблюдаемый в организме, обуславливает самообновление и самовоспроизведение на всех уровнях от молекулярного до организменного и популяционного.

В процессе обмена веществ с пищей, водой, при газообмене в организм из окружающей среды поступают разнообразные химические соединения, которые после превращений уподобляются химическому составу организма и входят в его морфологические структуры. Через определённый период усвоенные вещества разрушаются, освобождая энергию, а разрушенную молекулу заменяет новая, не нарушая целостности структурных компонентов организма.

Организмы находятся в условиях непрерывно меняющейся среды, несмотря на это, основные физиологические показатели продолжают осуществляться в определённых параметрах и организм поддерживает устойчивое состояние здоровья в течение длительного времени, благодаря процессам саморегуляции.

Таким образом, понятие гомеостаза не связано со стабильностью процессов. В ответ на действие внутренних и внешних факторов происходит некоторое изменение физиологических показателей, а включение регуляторных систем обеспечивает поддержание относительного постоянства внутренней среды. Регуляторные гомеостатические механизмы функционируют на клеточном, органном, организменном и надорганизменном уровнях.

В эволюционном плане гомеостаз - это наследственно закреплённые адаптации организма к обычным условиям окружающей среды.

Различают следующие основные виды гомеостаза:

1) генетический

2) структурный

3) гомеостаз жидкой части внутренней среды (кровь, лимфа, межтканевая жидкость)

4) иммунологический.

Генетический гомеостаз - сохранение генетической стабильности благодаря прочности физико-химических связей ДНК и её способности к восстановлению после повреждения (репарация ДНК). Самовоспроизведение - фундаментальное свойство живого, оно основано на процессе редупликации ДНК. Сам механизм этого процесса, при котором новая нить ДНК строится строго комплементарно около каждой из составляющих молекул двух старых нитей, является оптимальным для точной передачи информации. Точность этого процесса высока, но всё же могут происходить ошибки при редупликации. Нарушение структуры молекул ДНК может происходить и в её первичных цепях вне связи с редупликацией под воздействием мутагенных факторов. В большинстве случаев происходит восстановление генома клетки, исправление повреждения, благодаря репарации. При повреждении механизмов репарации происходит нарушение генетического гомеостаза как на клеточном, так и на организменном уровнях.

Важным механизмом сохранения генетического гомеостаза является диплоидное состояние соматических клеток у эукариот. Диплоидные клетки отличаются большей стабильностью функционирования, т.к. наличие у них двух генетических программ повышает надёжность генотипа. Стабилизация сложной системы генотипа обеспечивается явлениями полимерии и другими видами взаимодействия генов. Большую роль в процессе гомеостаза играют регуляторные гены, контролирующие активность оперонов.

Структурный гомеостаз - это постоянство морфологической организации на всех уровнях биологических систем. Целесообразно выделить гомеостаз клетки, ткани, органа, систем организма. Гомеостаз нижележащих структур обеспечивает морфологическое постоянство вышестоящих структур и является основой их жизнедеятельности.

Клетке, как сложной биологической системе, присуща саморегуляция. Установление гомеостаза клеточной среды обеспечивается мембранными системами, с которыми связаны биоэнергетические процессы и регулирование транспорта веществ в клетку и из неё. В клетке непрерывно идут процессы изменения и восстановления органоидов, разрушаются и восстанавливаются и сами клетки. Восстановление внутриклеточных структур, клеток, тканей, органов в процессе жизнедеятельности организма происходит благодаря физиологической регенерации. Восстановление структур после повреждения - репаративной регенерации.

Гомеостаз жидкой части внутренней среды - постоянство состава крови, лимфы, тканевой жидкости, осмотического давления, общей концентрации электролитов и концентрации отдельных ионов, содержания в крови питательных веществ и т.д. Эти показатели даже при значительных изменениях условий внешней среды удерживаются на определённом уровне, благодаря сложным механизмам.

К примеру, одним из важнейших физико-химических параметров внутренней среды организма является кислотно-щелочное равновесие. Соотношение водородных и гидроксильных ионов во внутренней среде зависит от содержания в жидкостях организма (кровь, лимфа, тканевая жидкость) кислот - донаторов протонов и буферных оснований - акцепторов протонов. Обычно активную реакцию среды оценивают по иону H+. Величина pH (концентрация водородных ионов в крови) является одним из стабильных физиологических показателей и колеблется у человека в узких пределах - от 7,32 до 7,45. От соотношения водородных и гидроксильных ионов в значительной мере зависят активность ряда ферментов, проницаемость мембран, процессы синтеза белка и т.д.

В организме имеются различные механизмы, обеспечивающие поддержание кислотно-щелочного равновесия. Во-первых, это буферные системы крови и тканей (карбонатный, фосфатные буферы, тканевые белки). Буферными свойствами обладает и гемоглобин, он связывает углекислоту и препятствует её накоплению в крови. Сохранению нормальной концентрации водородных ионов способствует и деятельность почек, поскольку значительное количество метаболитов, имеющих кислую реакцию, выводится с мочой. Если перечисленные механизмы оказываются недостаточными, концентрация углекислоты в крови увеличивается, происходит некоторый сдвиг pH в кислую сторону. В таком случае возбуждается дыхательный центр, усиливается легочная вентиляция, что приводит к понижению содержания углекислоты и нормализации концентрации водородных ионов.

Чувствительность тканей к изменениям внутренней среды различна. Так сдвиг pH на 0,1 в ту или другую сторону от нормы приводит к значительным нарушениям деятельности сердца, а отклонение на 0,3 является опасным для жизни. Нервная система особенно чувствительна к снижению содержания кислорода. Для млекопитающих опасно колебание концентрации ионов кальция, превышающее 30% и т.д.

Иммунологический гомеостаз - поддержание постоянства внутренней среды организма путём сохранения антигенной индивидуальности особи. Под иммунитетом понимают способ защиты организма от живых тел и веществ, несущих на себе признаки генетически чужеродной информации (Петров, 1968).

Чужеродную генетическую информацию несут бактерии, вирусы, простейшие, гельминты, белки, клетки, включая изменённые клетки самого организма. Все перечисленные факторы являются антигенами. Антигены - это вещества, которые при введении в организм способны вызвать образование антител или другую форму иммунного реагирования. Антигены очень разнообразны, чаще ими являются белки, но это бывают и крупные молекулы липополисахаридов, нуклеиновых кислот. Неорганические соединения (соли, кислоты), простые органические соединения (углеводы, аминокислоты) не могут быть антигенами, т.к. не имеют специфичности. Австралийский учёный Ф.Бернет (1961) сформулировал положение, что основное значение иммунной системы состоит в распознавании «своего» и «чужого», т.е. в сохранении постоянства внутренней среды - гомеостаза.

Иммунная система имеет центральное (красный костный мозг, вилочковая железа - тимус) и периферическое (селезёнка, лимфоузлы) звено. Защитная реакция осуществляется лимфоцитами, образующимися в указанных органах. Лимфоциты типа В при встрече с чужеродными антигенами дифференцируются в плазматические клетки, которые выделяют в кровь специфические белки - иммуноглобулины (антитела). Эти антитела, соединяясь с антигеном, обезвреживают их. Такая реакция получила название гуморального иммунитета.

Лимфоциты типа Т обеспечивают клеточный иммунитет, уничтожая чужеродные клетки, например, отторжение трансплантата, и подвергшиеся мутации клетки собственного организма. По расчётам, приведённым Ф.Бернетом (1971), в каждой генетической смене делящихся клеток человека в течение одних суток накапливается около 10 - 6 спонтанных мутаций, т.е. на клеточном и молекулярном уровнях непрерывно происходят процессы, нарушающие гомеостаз. Т-лимфоциты опознают и уничтожают мутантные клетки собственного организма, таким образом обеспечивается функция иммунного надзора.

Иммунная система осуществляет контроль за генетическим постоянством организма. Эта система, состоящая из анатомически разобщённых органов, представляет функциональное единство. Свойство иммунной защиты достигло высшего развития у птиц и млекопитающих.

Регуляция гомеостаза осуществляется следующими органами и системами (рис. 91):

1) центральной нервной системой;

2) нейроэндокринной системой, включающей в свой состав гипоталамус, гипофиз, периферические эндокринные железы;

3) диффузной эндокринной системой (ДЭС), представленной эндокринными клетками, расположенными практически во всех тканях и органах (сердце, лёгкое, ЖКТ, почки, печень, кожа и др.). Основная масса клеток ДЭС (75%) сосредоточена в эпителии пищеварительной системы.

В настоящее время известно, что ряд гормонов одновременно присутствует в центральных нервных структурах и эндокринных клетках ЖКТ. Так гормоны энкефалины и эндорфины обнаружены в нервных клетках и эндокринных клетках поджелудочной железы и желудка. Холицистокинин выявлен в головном мозге и в 12-перстной кишке. Такие факты дали основание для создания гипотезы о наличии в организме единой системы клеток химической информации. Особенность нервной регуляции состоит в быстроте наступления ответной реакции, причём эффект её проявляется непосредственно в том месте, куда поступает по соответствующему нерву сигнал; реакция кратковременна.

В эндокринной системе регуляторные влияния связаны с действием гормонов, разносимых с кровью по всему организму; эффект действия длительный и не имеет локального характера.

Объединение нервных и эндокринных механизмов регуляции происходит в гипоталамусе. Общая нейроэндокринная система позволяет осуществлять сложные гомеостатические реакции, связанные с регуляцией висцеральных функций организма.

Гипоталамус обладает и железистыми функциями, продуцируя нейрогормоны. Нейрогормоны, попадая с кровью в переднюю долю гипофиза, регулируют выделение тропных гормонов гипофиза. Тропные гормоны регулируют непосредственно работу эндокринных желёз. Например, тиреотропный гормон гипофиза возбуждает работу щитовидной железы, повышая уровень тиреоидного гормона в крови. Когда концентрация гормона возрастёт выше нормы для данного организма, тиреотропная функция гипофиза угнетается и деятельность щитовидной железы ослабляется. Таким образом, для сохранения гомеостаза необходимо уравновешивание функциональной активности железы с концентрацией гормона, находящегося в циркулирующей крови.

На этом примере проявляется общий принцип гомеостатических реакций: отклонение от исходного уровня --- сигнал --- включение регуляторных механизмов по принципу обратной связи --- коррекция изменения (нормализация).

Некоторые эндокринные железы не испытывают прямой зависимости от гипофиза. Это островки поджелудочной железы, продуцирующие инсулин и глюкагон, мозговая часть надпочечников, эпифиз, тимус, околощитовидные железы.

Особое положение в эндокринной системе занимает тимус. В ней вырабатываются гормоноподобные вещества, которые стимулируют образование Т-лимфоцитов, и устанавливается взаимосвязь между иммунными и эндокринными механизмами.

Способность сохранять гомеостаз - одно из важнейших свойств живой системы, находящейся в состоянии динамического равновесия с условиями внешней среды. Способность к поддержанию гомеостаза неодинакова у различных видов, она высока у высших животных и человека, имеющих сложные нервные, эндокринные и иммунные механизмы регуляции.

В онтогенезе каждый возрастной период характеризуется особенностями обмена веществ, энергии и механизмами гомеостаза. В детском организме преобладают процессы ассимиляции над диссимиляцией, чем обусловлен рост, увеличение массы тела, механизмы гомеостаза ещё недостаточно созрели, что накладывает отпечаток на протекание как физиологических, так и патологических процессов.

С возрастом происходит совершенствование обменных процессов, механизмов регуляции. В зрелом возрасте процессы ассимиляции и диссимиляции, система нормализации гомеостаза обеспечивают компенсацию. При старении снижается интенсивность обменных процессов, ослабляется надёжность механизмов регуляции, происходит угасание функции ряда органов, одновременно развиваются новые специфические механизмы, поддерживающие сохранение относительного гомеостаза. Это выражается, в частности, в увеличении чувствительности тканей к действию гормонов наряду с ослаблением нервных воздействий. В этот период ослаблены адаптационные особенности, поэтому повышение нагрузки и стрессовые состояния легко могут нарушить гомеостатические механизмы и нередко становятся причиной патологических состояний.

Знание этих закономерностей необходимо для будущего врача, так как болезнь является следствием нарушения механизмов и путей восстановления гомеостаза у человека.

В организме высших животных выработались приспособления, противодействующие многим влияниям внешней среды, обеспечивающие относительно постоянные условия существования клеток. Это имеет важнейшее значение для жизнедеятельности целостного организма. Иллюстрируем это примерами. Клетки организма теплокровных животных, т. е. животных, обладающих постоянной температурой тела, нормально функционируют лишь в узких температурных границах (у человека в пределах 36-38°). Сдвиг температуры за пределы этих границ приводит к нарушению жизнедеятельности клеток. Вместе с тем организм теплокровных животных может нормально существовать при значительно более широких колебаниях температуры внешней среды. Например, полярный медведь может жить при температуре - 70° и +20-30°. Это связано с тем, что в целостном организме регулируется его теплообмен с окружающей средой, т. е. теплообразование (интенсивность, химических процессов, происходящих с освобождением тепла) и теплоотдача. Так, при низкой температуре внешней среды теплообразование увеличивается, а теплоотдача уменьшается. Поэтому при колебаниях внешней температуры (в некоторых пределах) сохраняется постоянство температуры тела.

Функции клеток организма нормальны лишь при относительном постоянстве осмотического давления, обусловленного постоянством содержания в клетках электролитов и воды. Изменения осмотического давления - его уменьшение или его увеличение - приводят к резким нарушениям функций и структуры клеток. Организм же как целое может некоторое время существовать и при избыточном поступлении и при лишении его воды, и при больших и малых количествах солей в пище. Это объясняется наличием в организме приспособлений, способствующих поддержанию
постоянства количества воды и электролитов в теле. В случае избыточного поступления воды значительные ее количества быстро выделяются из организма выделительными органами (почками, потовыми железами, кожей), а при недостатке воды она удерживается в теле. Равным образом выделительные органы регулируют содержание электролитов в организме: они быстро выводят избыточные их количества или удерживают их в жидкостях организма при недостаточном поступлении солей.

Концентрация отдельных электролитов в крови и в тканевой жидкости, с одной стороны, и в протоплазме клеток - с другой, различна. В крови и в тканевой жидкости содержится больше ионов натрия, а в протоплазме клеток больше ионов калия. Различие концентрации ионов внутри клетки и вне ее достигается специальным механизмом, удерживающим ионы калия внутри клетки и не позволяющим накапливаться в клетке ионам натрия. Этот механизм, природа которого еще не ясна, назван натрий-калиевым насосом и связан с процессом обмена веществ клетки.

Клетки организма весьма чувствительны к сдвигам концентрации водородных ионов. Изменение концентрации этих ионов в ту или другую сторону резко нарушает жизнедеятельность клеток. Для внутренней среды организма характерно постоянство концентрации водородных ионов, зависящее от наличия в крови и тканевой жидкости так называемых буферных систем (стр. 48) и от деятельности органов выделения. При увеличении содержания кислот или щелочей в крови они быстро выводятся из организма и таким путем поддерживается постоянство концентрации водородных ионов внутренней среды.

Клетки, особенно нервные, очень чувствительны к изменению уровня сахара в крови, служащего важным питательным веществом. Поэтому большое значение для процесса жизнедеятельности имеет постоянство содержания сахара в крови. Оно достигается тем, что при повышении в крови уровня сахара в печени и мышцах синтезируется из него откладывающийся в клетках полисахарид - гликоген, а при понижении уровня сахара в крови гликоген расщепляется в печени и мышцах и освобождается виноградный сахар, поступающий в кровь.

Постоянство химического состава и физико-химических свойств внутренней среды является важной особенностью организмов высших животных. Для обозначения этого постоянства У. Кеннон предложил термин, получивший широкое распространение, - гомеостаз. Выражением гомеостаза является наличие ряда биологических констант, т. е. устойчивых количественных показателей, характеризующих нормальное состояние организма. Такими постоянными по величине показателями являются: температура тела, осмотическое давление крови и тканевой жидкости, содержание в них ионов натрия, калия, кальция, хлора и фосфора, а также белков и сахара, концентрация водородных ионов и ряд других.

Отмечая постоянство состава, физико-химических и биологических свойств внутренней среды, следует подчеркнуть, что оно является не абсолютным, а относительным и динамическим. Это постоянство достигается непрерывно совершаемой работой ряда органов и тканей, в результате которой выравниваются происходящие под влиянием изменений внешней среды и в результате жизнедеятельности организма сдвиги в составе и физико-химических свойствах внутренней среды.

Роль разных органов и их систем в сохранении гомеостаза различна. Так, система органов пищеварения обеспечивает поступление в кровь питательных веществ в том виде, в каком они могут быть использованы клетками организма. Система органов кровообращения осуществляет непрерывное движение крови и транспорт различных веществ в организме, в результате чего питательные вещества, кислород и различные химические соединения, образующиеся в самом организме, поступают к клеткам, а продукты распада, в том числе углекислота, выделяемые клетками, переносятся к органам, которые их выводят из организма. Органы дыхания обеспечивают поступление кислорода в кровь и удаление углекислого газа из организма. Печень и ряд других органов осуществляют значительное число химических превращений - синтез и расщепление многих химических соединений, имеющих значение в жизнедеятельности клеток. Органы выделения - почки, легкие, потовые железы, кожа - удаляют из организма конечные продукты распада органических веществ и поддерживают постоянство содержания воды и электролитов в крови, а следовательно, в тканевой жидкости и в клетках организма.

В поддержании гомеостаза важнейшая роль принадлежит нервной системе. Чутко реагируя на различные изменения внешней или внутренней среды, она так регулирует деятельность органов и систем, что предупреждаются и выравниваются сдвиги и нарушения, которые происходят или могли бы произойти в организме.

Благодаря развитию приспособлений, обеспечивающих относительное постоянство внутренней среды организма, его клетки менее подвержены изменчивым влияниям внешней среды. Согласно Кл. Бернару, «постоянство внутренней среды является условием свободной и независимой жизни».

Гомеостаз имеет определенные границы. При пребывании, особенно длительном, организма в условиях, которые значительно отличаются от тех, к которым он приспособлен, гомеостаз нарушается и могут произойти сдвиги, несовместимые с нормальной жизнью. Так, при значительном изменении внешней температуры в сторону как ее повышения, так и понижения, температура тела может повыситься или понизиться и может наступить перегревание или охлаждение организма, приводящее к гибели. Равным образом, при значительном ограничении поступления в организм воды и солей или полном лишении его этих веществ относительное постоянство состава и физико-химических свойств внутренней среды через некоторое время нарушается и жизнь прекращается.

Высокий уровень гомеостаза возникает лишь на определенных этапах видового и индивидуального развития. Низшие животные не обладают достаточно развитыми приспособлениями для смягчения или устранения влияний изменений внешней среды. Так, например, относительное постоянство температуры тела (гомойотермия) поддерживается лишь у теплокровных животных. У так называемых холоднокровных животных температура тела близка к температуре внешней среды и представляет переменную величину (пойкилотермия). У новорожденного животного нет такого постоянства температуры тела, состава и свойств внутренней среды, как у взрослого организма.

Даже небольшие нарушения гомеостаза приводят к патологии, и потому определение относительно постоянных физиологических показателей, таких, как температура тела, артериальное давление крови, состав, физико-химические и биологические свойства крови и т. п., имеет большое диагностическое значение.