Потенциал действия нервной клетки. Биопотенциалы

Закон «всё или ничего» - правило, согласно которому на подпороговое раздражение возбудимая клетка не дает ответа, а на пороговое раздражение дает сразу максимальный ответ, причем при дальнейшем повышении силы раздражения величина ответа не изменяется.

№100. Потенциал действия: графический вид и характеристики, механизмы возникновения и развития.

Потенциа́л де́йствия - волна возбуждении, перемещающаяся по мембране живой клетки в процессе передачи нервного сигнала. По сути своей представляет электрический разряд - быстрое кратковременное изменение потенциала на небольшом участке мембраны возбудимой клетки (нейрона, мышечного волокна или железистой клетки), в результате которого наружная поверхность этого участка становится отрицательно заряженной по отношению к соседним участкам мембраны, тогда как его внутренняя поверхность становится положительно заряженной по отношению к соседним участкам мембраны. Потенциал действия является физической основой нервного или мышечного импульса, играющего сигнальную (регуляторную) роль.

А – спокойное состояние; В –мембрана на которой возник потенциал действия

В основе любого потенциала действия лежат следующие явления:

1. Мембрана живой клетки поляризована - её внутренняя поверхность заряжена отрицательно по отношению к внешней благодаря тому, что в растворе возле её внешней поверхности находится бо́льшее количество положительно заряженных частиц (катионов), а возле внутренней поверхности - бо́льшее количество отрицательно заряженных частиц (анионов).

2. Мембрана обладает избирательной проницаемостью - её проницаемость для различных частиц (атомов или молекул) зависит от их размеров, электрического заряда и химических свойств.

3. Мембрана возбудимой клетки способна быстро менять свою проницаемостъ для определённого вида катионов, вызывая переход положительного заряда с внешней стороны на внутреннюю.

Третье явление является особенностью клеток возбудимых тканей и причиной, по которой их мембраны способны генерировать и проводить потенциалы действия.

1. Предспайк - процесс медленной деполяризации мембраны до критического уровня деполяризации (местное возбуждение, локальный ответ).

2. Пиковый потенциал, состоящий из восходящей части (деполяризация мембраны) и нисходящей части (реполяризация мембраны).

3. Отрицательный следовой потенциал - от критического уровня деполяризации до исходного уровня поляризации мембраны (следовая деполяризация).

4. Положительный следовой потенциал - увеличение мембранного потенциала и постепенное возвращение его к исходной величине (следовая гиперполяризация).



№101.Потенциал-зависимые ионные каналы: строение, свойства, функционирование

Для каналов характерна ионная специфичность. Каналы одного типа пропускают только ионы калия, другого - только ионы натрия и т. д.

Ионные потенциал-зависимые каналы - это каналы, которые открываются и закрываются в ответ на изменение мембранного потенциала, например, натриевые каналы, ответственные за потенциал действия Если мембранный потенциал поддерживать на уровне потенциала покоя, натриевый ток практически отсутствует, что означает, что натриевые каналы закрыты. Если теперь сдвинуть мембранный потенциал в положительную сторону и удерживать его на постоянном уровне, то потенциал-зависимые натриевые каналы откроются и ионы натрия начнут передвигаться в клетку по градиенту концентрации. Этот натриевый ток достигнет максимума и Через несколько миллисекунд ток падает почти до нуля. Закрывшись, каналы переходят в инактивированное состояние, отличающееся от первоначального закрытого состояния, при котором они были способны открыться в ответ на деполяризацию мембраны. Каналы остаются инактивированными до тех пор, пока мембранный потенциал не вернется к исходному отрицательному значению и не закончится восстановительный период длительностью в несколько миллисекунд.

При регистрации токов в очень малых участках мембраны было обнаружено, что канал открывается по принципу "все или ничего". Открытые каналы обладают одинаковой проводимостью, но открываются и закрываются независимо друг от друга, поэтому суммарный ток через мембрану всей клетки с ее многочисленными каналами определяется не степенью открытости каналов, а вероятностью быть открытым для каждого отдельного канала.

_______________________________________________________________________________________

№102. Механизм и скорость распространения потенциала действия по безмякотному нервному волокну.

Скорость проведения в нервных волокнах колеблется от 0,25 м/сек в очень тонких немиелинизированных волокнах

Распространение потенциала действия вдоль нервного волокна(аксона) обусловлено возникновением локальных токов, образующихся между возбужденным и невозбужденным участками клетки. В состоянии покоя внешняя поверхность клеточной мембраны имеет положительный потенциал, а внутренняя отрицательный. В момент возбуждения полярность мембраны меняется на противоположную. В результате этого между возбужденным и невозбужденным участками мембраны возникает разность потенциалов, это и приводит к появлению между этими участками локальных токов. На поверхности клеток локальный ток течет от невозбужденного участка к возбужденному, внутри клетки – в обратном направлении. Локальный ток раздражает соседние невозбужденные участки и вызывает увеличение проницаемости мембран. Это приводит к возникновению потенциалов действия в соседних участках. В то же время, в ранее возбужденном участке происходят восстановительные процессы реполяризации Вновь возбужденный участок в свою очередь становиться элекроотрицательным и возникающий локальный ток раздражает следующий за ним участок. Этот процесс повторяется многократно и обусловливает распространение импульсов возбуждения по всей длинне клетки в обоих направлениях. В нервной системе импульсы проходят лишь в определенном направлении из-за наличия синапсов, обладающих односторонней проводимостью.

Удельное сопротивление биомембран велико, но вследствии их малой толщины сопротивление изоляции в сотни тысяч раз меньше, чем у технического кабеля.По этому однородное нервное волокно не может проводить электрический сигнал на далекие расстояния.

λ=корень из (dR/4р)

d- диаметр волокна, R - поверхностное сопротивление мембраны в Ом * м 2 и р-удельное сопротивление аксоплазмы в Ом*м.

С увеличением λ (постоянная длины) степень затухания сигнала уменьшается, при этом возрастает скорость проведения импульса. Увеличения постоянной длинны λ можно добиться путем увеличения диаметра d аксона.

_______________________________________________________________________________________

№103. Механизм и скорость распространения потенциала действия по миелинизированному нервному волокну.

У высокоорганизованных животных затухание сигнала предотвращается с помощью миелиновой оболочки вокруг аксона. Примерно через каждые 1-3 мм вдоль миелиновой оболочки имеется перехват Ранвье.

Центральной его частью является аксон, по мембране которого проводится потенциал действия. Аксон заполнен аксоплазмой - вязкой внутриклеточной жидкостью.

С увеличением λ степень затухания сигнала уменьшается, при этом возрастает скорость проведения импульса.

Удельное сопротивление миелина значительно выше удельного сопротивления других биологических мембран.кроме того толщина миелиновой оболочки во много раз больше толщины обычной мембраны, что приводит к возрастанию диаметра волокна и соответственно величины постоянной длины. λ

В связи с большим сопротивлением миелиновой оболочки по поверзности аксона токи протекать не могут. При возбуждении одного узла возникают токи между ним и другими узлами. Ток подошедший к другому узлу, возбуждает его, вызывает появление в этом месте потенциала действия, и так процесс распространяется по всему волокну. Затраты энергии на распространение сигнала по волокну, покрытому миелином значительно меньше чем по немиелинизированному.

_______________________________________________________________________________________

№104. Назначение и определение рецепции. Схема движения информации при рецепции.

Рецепция – это восприятие организмом энергии раздражителя, несущего информацию и преобразующим её в электрические сигналы нервного возбуждения.

Рецепция необходима для:

1. Оптимизации поведения живой системы в зависимости от ситуации во внешнем мире

2. Непрерывные регуляции характеристик состояния внутренних органов, сред и тканей организма

Простейшая блок схема (квадратики 1-9, 5 и 8 -над линией):

1. Источник информации

2. Стимул, воспринимаемый организмом

3. Устройство подготовки и сбора сигнала для рецепции

4. Непосредственно рецептор (устройство воспринимающее сигнал и преобразующее его в электронные импульсы)

5. Нервные пучки, проводящие импульсы в корковый центр

6. Корковый центр, воспринимающий и осуществляющий анализ первичной информации

7. ЦНС – окончательная обработка и оценка информации

8. Эфферентные нервные пути передающие информацию от ЦНС к органу или системе то есть эффектору.

9. Исполнитель

№105. Определение рецептора. Органы чувств и анализаторы. Примеры использования рецепции в жизнедеятельности организма.

Рецептор – это устройство воспринимающее сигнал и преобразующее его в электронные импульсы

Биологические анализаторы – это биологические системы, предназначенные для восприятия, а иногда и обработки информации из внешней и внутренней среды

Порог ступени : ни одна сенсорная система не способна воспринимать сигнал сколь угодно малой интенсивности. Она воспринимает только те сигналы которые больше I порога ступени.

Порок интенсивности – минимальная единица, которая вызывает чувствительность

Kc = I ад.ст./ I неад. ст.

Частотная характеристика – стимулы, имеющие колебательную природу.

При постоянной I стимула (I ст = const), но изменении его частоты происходит адекватное отражение картины, но при определенном диапазоне частот – картина искажается, на еще большем отдалении сигнал перестает восприниматься.

Амплитудная характеристика связывает I ощущения с I стимула.

Предел разрешения: тип различия между параметрами сигнала (либо по амплитуде, либо по частоте), которые при данных условиях еще вызывают ощущения изменения.

Орган чувств - сложившаяся в процессе эволюции специализированная периферическая анатомо-физиологическая система, обеспечивающая благодаря своим рецепторам получение и первичный анализ информации из окружающего мира и от других органов самого организма, то есть из внешней и внутренней среды организма.

Дистантные органы чувств воспринимают раздражения на расстоянии (например, органы зрения, слуха, обоняния); другие органы (вкусовые и осязания) - лишь при непосредственном контакте. Одни органы чувств могут в определенной степени дополнять другие. Например, развитое обоняние или осязание может в некоторой степени компенсировать слабо развитое зрение.

Примеры использования рецепции в жизнедеятельности организма.??

№106. Классификация рецепторов.

1. По методу получения информации:

Экстерорецепторы (из внешней среды)

Интерорецепторы (изнутри)

2. По природе воспринимаемых раздражителей:

Механорецепторы (рецепторы расширения легких)

Хеморецепторы (рецепторы кожных реакций, слуха, обоняния, вкуса)

Терморецепторы (тепловые, холодовые)

Электрорецепторы (боковые линии у рыб)

Магниторецепторы (навигация при перемещении у птиц)

3. По степени универсальности:

Мономодальные – фиксирующие раздражение только одного раздражителя

Полимодальные - фиксирующие раздражение нескольких раздражителей

№107. Строение рецепторов.

СНО (свободные нервные окончания). Аксон разделяется на нервные окончания, потерявшие способность к возбуждению, являются полимодальными образованиями.

ИНО (инкапсулированные чувствительные окончания)

Они были сконструированы, как чувствительные специализированные клетки мономодальные. Являются видоизменёнными аксонами нейронов, иногда это эпителиальные клетки.

По внутреннему строению рецепторы бывают как простейшими, состоящими из одной клетки, так и высокоорганизованными, состоящими из большого количества клеток, входящих в состав специализированного органа чувств.

Наиболее примитивными рецепторами считаются механические, реагирующие на прикосновение и давление. Разница между этими двумя ощущениями количественная; прикосновение обычно регистрируется тончайшими окончаниями нейронов, расположенными близко к поверхности кожи, в основаниях волосков или усиков. Есть и специализированные органы – тельца Мейснера. На давление же реагируют тельца Пачини, состоящие из единственного нервного окончания, окружённого соединительной тканью. Импульсы возбуждаются за счёт изменения проницаемости мембраны, возникающей благодаря её растяжению.

№108. Общие механизмы рецепции. Рецепторные потенциалы.

1 этап: Когда приходит адекватный для данного рецептора стимул. Взаимодействует с рецептирующим субстратом, который обычно находятся в мембране клетки.

2 этап: В R: происходит локальное изменение мембранной разности потенциалов. Сам рецептор не является возбудимой клеткой, так как там нет потенциал зависимых каналов! Изменение – рецепторный потенциал (РП), не подвергается закону «все или ничего», зависит от длительности действия стимула и от его интенсивности.

3 этап: Генерации потенциала приводит в R: к возобновлению потенциала действия (ПД).

Деполяризация называется рецепторным потенциалом (или генераторным потенциалом). Рецепторный потенциал обусловлен повышением Na+ - проводимости мембраны дендритов, в результате чего вход ионов натрия создает деполяризующий рецепторный потенциал, который электротонически распространяется к соме. Эта первичная трансформация стимула в рецепторный потенциал называется преобразованием, а рецептор, таким образом, является преобразователем.

Исключение составляют рецепторные потенциалы первичных зрительных клеток сетчатки, являющиеся гиперполяризующими.

Стимул не служит источником энергии для рецепторного потенциала, он только контролирует путем взаимодействия с мембранными процессами вход ионов через мембрану, основанный на трансмембранной разности их концентраций.

Рецепторный потенциал электротонически распространяется от дендритов по соме, деполяризует основание аксона и если деполяризация превысит порог для возбуждения, в аксоне возникает серия потенциалов действия, частота которой зависит от амплитуды рецепторного потенциала. Потенциалы действия проводятся в ЦНС и несут в форме частотного кода всю информацию о величине и длительности стимулов.

Потенциа́л де́йствия - волна возбуждения, перемещающаяся по мембране живой клетки в процессе передачи нервного сигнала. По сути своей представляет электрический разряд - быстрое кратковременное изменение потенциала на небольшом участке мембраны возбудимой клетки (нейрона, мышечного волокна или железистой клетки), в результате которого, наружная поверхность этого участка становится отрицательно заряженной, по отношению к соседним участкам мембраны, тогда как его внутренняя поверхность становится положительно заряженной по отношению к соседним участкам мембраны. Потенциал действия является физической основой нервного или мышечного импульса, играющего сигнальную (регуляторную) роль.

№109. Кодирование информации в органах чувств.

Цели биологической системы:

1. самосохранение

2. продолжение рода

Любая информация, приходящая в рецепторные системы переносится определенным физическим носителем (длительные анализатор – электро-магнитные). Стимулы преобразуется в рецепторный потенциал, а затем в потенциала действия.

v(ню) = k log I(ст) – частота следующих пачек ПД пропорциональна интенсивности стимула.

В сенсорных системах широко применяется кодирование силы раздражителя:
1) путём изменения частоты импульсов в волокнах;
2) количеством задействованных нервных элементов;
3) также широко применяется кодирование качества раздражителя особой структурой ответа рецептора и волокна, так называемым паттерном (рисунком) ответа.

Согласно теории структуры ответа качества раздражителя кодируются рисунком (паттерном) пачки ПД, т.е. количеством, частотой и характерным распределением потенциалов действия внутри каждой пачки импульсов, а также количеством, продолжительностью, частотой самих пачек, периодичностью их следования, продолжительностью межимпульсных интервалов и т.д.

№110. Особенности светового и звукового восприятия. Закон Вебера-Фехнера.

Психофизический закон Вебера-Фехнера. Если увеличение раздражения в геометрической прогрессии, то ощущение этого раздражения увеличивает в арифметической прогрессии.

Если I (интенсивность звука) принимает ряд последовательных значений аI 0 ; a 2 I 0 ; a 3 I 0 , то соответствующим ощущением – E 0 ; 2E 0 ; 3E 0 … a – коэффициент, а больше 1.

Другими словами, громкость звука пропорциональна логарифму интенсивности звука. При действии 2-х звуковых раздражителей I0 и I (I0 – порок слышимости)

E=k*lg(I/ I); k - коэффициент пропорциональности.

Рецепция Звука:

Характеризуется:

1. Частотой

2.Амплитудой

3. Спектром

Продольные акустические давление в определенном диапазоне частот.

Абсолютный порог слышимости – I тип звука, который улавливается ухом.

I0=10-12 Вт/м2 – на частоте измеряется в кГц

Коэффициент избирательности равен 10-10.

Ушная раковина

Наружный слуховой проход

Барабанная перепонка

Рецепция света:

Рецепция света – фоторецепторы

1.Колбочки – реализация цветового зрения. Принцип действия такой жжет как и у палочек.

2. Палочки – реализация сумеречного зрения. Сетчатка – многослойное образование, толстое, есть сосудистая оболочка и т.д. Рецепторы находятся на дне в пигментном эпителии.

Квант света попадает в мембране диска. Этим зрительным рецепции и отличается, т.к. в других случаях стимул в самих рецепторах, а в зрительном рецепторе в мембрану органеллы. У палочек рецепторный пигмент – родоксин, у колбочек – йодоксин. Родоксин состоит из ретиноля и оксина, свойство – имеет возможность конформационно перестраиваться.

Нормальное состояние – цис-состояние, отличающееся закругленностью. Поймав квант света происходит перестройка в транс-состояние, при это выделяется некоторое количество энергии. Процесс называется фотоизомерезация.

Происходит изменение свойств мембраны дисков. Рождается внутриклеточный посредник, он передает г/з ц/п воздействия на цитомембрану – происходит воздействие на неё (гиперполяризация) – палочки/колбочки.

Рецепторный потенциал - биопотенциал, возникающий при деполяризации поверхностной мембраны рецептора, обусловленной действием на него раздражителя. Он распределяется по мембране колбочки/палочки и добирается до синапса. Сигнал, прошедший синапс, возбуждает мембрану аксона. Далее он распределяется дальше и идет в зрительный нерв. Гиперполяризация возникает благодаря тому, что прошедший внутренний посредник способствует закрытию натриевых каналов и называется они фотозависимые Na каналы.

Проблемы Цветного зрения:

Дальтонизм (частичная цветовая слепота) наследственное нарушение цветового зрения у людей, заключающееся в неспособности различать некоторые цвета (большей частью красный и зеленый). Объясняется отсутствием в сетчатке глаза колбочек одного или нескольких типов.

№111. Основные характеристики слухового анализатора. Механизмы слуховой рецепции.

Звук – это механические колебания в упругой среде. Имеет объектив характеристики, т.е. не зависит от нашего восприятия.

Характеризуется:

1. Частотой

2.Амплитудой

3. Спектром

Интенсивность – это громкость звука.

Характеристики слухового анализатора:

Продольное акустическое давление - в определенном диапазоне частот.

Абсолютный порог слышимости – тип звука, который улавливается ухом.

I 0 =10 -12 Вт/м2 – на частоте измеряется в кГц

Коэффициент избирательности равен 10 -10 .

Слуховая рецепция. Назначение, строение и работа звуковоспринимающих систем.

1. Наружное ухо (подготовка звуковых колебаний к реакции)

Ушная раковина

Наружный слуховой проход

Барабанная перепонка

Есть слуховые косточки, связки, мышцы (среднее ухо), улитка, баз. мембрана.

По базальной мембране проходят прямая и отраженная волны. Пучность возникает при интерференции этих волн.

В месте залегания волосков – деполяризация доходит до колебания

Раздражение слухового нерва в нижней части БМ и через синапс.

№112. Основные характеристики зрительного анализатора. Механизмы зрительной рецепции.

Зрительный анализатор обладает оптической системой, которая преломляет и фокусирует приходящие световые лучи и в результате этого строится изображение на сетчатке.

Световые лучи – поток этих волн. Их можно рассматривать как волны и как аналоги некоторых частиц = кванты света.

Строение зрительного анализатора.

Адекватный раздражитель это волны определенного диапазона частот. Чувствительность зрительного анализатора – порог светочувствительности 10 -18 Вт

Глаз способен воспринимать световые кванты начиная с 10 кв, при прозрачной атмосфере можно увидеть свечу на расстоянии от 1-3 км. Коэффициент избирательности высокий 10 -14 .

Частотная характеристика.(400 – 750 Нм). Амплитудная характеристика - Эта логарифмическая зависимость выполняется в пределах 100 кратного измерения стимула.

№113. Физические факторы, имеющие экологическую значимость. Уровни естественного фона.

Экология – это условия окружающей среды, в которых находится биосистема.

Физические экологические факторы (по происхождению):

Геофизические →метеорологические→Земные

Космические: солнечные, космические

Антропогенные

Физические экологические факторы (по физ.сущности):

· магнитные поля (силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения.)

· гравитационные поля (физическое поле, через которое осуществляется гравитационное взаимодействие (Гравитация -универсальное фундаментальное взаимодействие между всеми материальными телами)

· электрические поля →ЭМ: радиоизлучение, телевизионный диапазон, локаторы, УФ облучение (на ДНК кожное облучение)

2. вибрация (механическиеколебания.)

3. радиация

· инфразвук (упругие волны, аналогичные звуковым, но с частотами ниже области слышимых человеком частот. Обычно за верхнюю границу инфразвуковой области принимают частоты 16-25 Гц)

· ультразвук (упругие звуковые колебания высокой частоты)

4. звуковые факторы

5. шумовые факторы

________________________________________________________________________________________________________

№114. Составляющие величины естественного фона. Примеры антропогенного изменения фоновых значений физических факторов.

Фон – усредненная величина, характеризующая количественное значение экологического фактора в данном регионе.

Фон = E ф.(естественный фон) + a×с (антропогенное состояние)

Р ф.= E ф. (излучение земных пород, космическое излучение радона) +a×с (возникает благодаря испытаниям яд. оружия)

М ф. = Е ф. (геомагнитное поле, космическое составляющее магнитного поля от естественных влияний) + a×с (электротранспорт, бытовая техника, мед. исследования)

Дополнительно. Изменения леса. Каждый участок леса подвергался раньше или подвергается сейчас определенным видам антропогенного воздействия - даже в том случае, если такое воздействие не может быть прямо обнаружено и измерено. Характерными примерами таких повсеместно распространенных видов антропогенных воздействий являются глобальное загрязнение атмосферы, изменения численности видов охотничье-промысловых животных или изменения частоты лесных пожаров в результате изменения плотности и образа жизни населения в лесных регионах.

_______________________________________________________________________________________

№115. Значение радиационного фона для здоровья человека.

Радиационное излучение – один из наиболее изученных и сильных по воздействию на живые системы биофизических факторов. За этим термином прячется спектр разнообразных по природе и по эффекту излучений.

Одна из опасностей радиоактивного излучения связана с тем, что у человека нет к нему рецепторов. Человеческий организм очень чувствителен к радиоактивным поражениям. Радиоактивное излучение в результате воздействий на клеточном и субклеточном уровне вызывает появление большого количества свободных радикалов (они вредоносны).

Возникает поражение системы крови, общее название – лучевая болезнь.

Радиопротекторы в какой-то степени понижают эффекты радиационного излучения.

Проникающая способность:

От мм для α

До см для β

Для нейротропного излучения до полного проникновения

_______________________________________________________________________________________

№116. Геомагнитное поле. Природа, биотропные характеристики, роль в жизнедеятельности биосистем.

Магнитное поле Земли (геомагнитное поле) - магнитное поле, генерируемое внутриземными источниками.

Строение и характеристики магнитного поля Земли

На небольшом удалении от поверхности Земли, порядка трёх её радиусов, магнитные силовые линии имеют диполеподобное расположение. Эта область называется плазмосферой Земли.

По мере удаления от поверхности Земли усиливается воздействие солнечного ветра: со стороны Солнца геомагнитное поле сжимается, а с противоположной, ночной стороны, оно вытягивается в длинный «хвост».

Параметры поля

Точки Земли, в которых напряжённость магнитного поля имеет вертикальное направление, называют магнитными полюсами. Таких точек на Земле две: северный магнитный полюс и южный магнитный полюс.

Прямая, проходящая через магнитные полюсы, называется магнитной осью Земли. Окружность большого круга в плоскости, которая перпендикулярна к магнитной оси, называется магнитным экватором. Напряжённость магнитного поля в точках магнитного экватора имеет приблизительно горизонтальное направление.

Магнитные поля в свободном состоянии – 0,4 Э (Эрстед)

Напряжённость поля на поверхности Земли сильно зависит от географического положения. Напряжённость магнитного поля на магнитном экваторе около 0,34 э (Эрстед), у магнитных полюсов около 0,66 э. В некоторых районах (в так называемых районах магнитных аномалий) напряжённость резко возрастает.

Для магнитного поля Земли характерны возмущения, называемые геомагнитными пульсациями вследствие возбуждения гидромагнитных волн в магнитосфере Земли; частотный диапазон пульсаций простирается от миллигерц до одного килогерца.

Магнитные поля в обычной жизни имеют небольшую интенсивность. Они обладают высокой проникающей способностью. В результате проведения исследований магнитного поля – выявился биотропный фактор.

Магнитотерапия – воздействие в качестве магнитного фактора.

Магнитная буря оказывает негативное воздействие.

_______________________________________________________________________________________

№117. Возможные механизмы влияния геомагнитного поля на организм.

1) Если сильно заряженные частицы есть в веществе – происходит изменение траектории движения зарядов

2) Эффект Зимана: Под действием Магнитного Поля электронные уровни атома расщепляются на подуровни; слабые Магнитные Поля вызывают этот эффект у тех ионов, которые участвуют в метаболизме.

_______________________________________________________________________________________

Потенциал действия - электрический импульс, возникающий между внутренней и наружной сторонами мембраны и обусловленный изменениями ионной проницаемости мембраны.

Фазы ПД:

Предспайк - процесс медленной деполяризации мембраны до критического уровня деполяризации.

Спайк (пиковый потенциал) - состоящий из восходящей части (деполяризация мембраны) и нисходящей части (реполяризациия)

Отрицательный следовой потенциал - от критического уровня деполяризации до исходного уровня поляризации мембраны.

Положительный следовой потенциал - увеличение мембранного потенциала и постепенное возвращение его к исходной величине.

Первый период - локальный ответ представляет собой активную местную деполяризацию, возникающую вследствие увеличения натриевой проницаемости клеточной мембраны. Однако при подпороговом стимуле начальное повышение натриевой проницаемости недостаточно велико, чтобы вызвать быструю деполяризацию мембраны. Локальный ответ возникает не только при подпороговом, но и при надпороговом раздражении и является составным компонентом потенциала действия. Таким образом, локальный ответ является первоначальной и универсальной формой реагирования ткани на различные по силе раздражения. Биологический смысл локального ответа состоит в том, что если раздражение мало, то ткань реагирует на него с минимальной тратой энергии, не включая механизмы специфической деятельности. В том же случае, когда раздражение надпороговое, локальный ответ переходит в потенциал действия. Период от начала раздражения до начала фазы деполяризации, когда локальный ответ, нарастая, снижает мембранный потенциал до критического уровня, называется латентным периодом или скрытым периодом. Продолжительность латентного периода зависит от характера раздражения (рис. 3.5.).

Второй период - фаза деполяризации. Эта часть потенциала действия характеризуется быстрым уменьшением мембранного потенциала и даже перезарядкой мембраны: внутренняя ее часть на некоторое время становится заряженной положительно, а внешняя отрицательно. В отличие от локального ответа скорость и величина деполяризации не зависит от силы раздражителя. Продолжительность фазы деполяризации в нервном волокне лягушки составляет около 0.2 - 0.5 мс.

Третий период потенциала действия - фаза реполяризации, ее продолжительность составляет 0.5-0.8 мс. В течение этого времени мембранный потенциал постепенно восстанавливается и достигает 75 - 85% потенциала покоя. В литературе второй и третий периоды часто называют пиком потенциала действия.

Колебания мембранного потенциала, следующие за пиком потенциала действия, называют следовыми потенциалами. Различают два вида следовых потенциалов -следовую деполяризацию и следовую гиперполяризацию, которые соответствуют четвертой и пятой фазе потенциала действия. Следовая деполяризация является продолжением фазы реполяризации и характеризуется более медленным (по сравнению с фазой реполяризации) восстановлением потенциала покоя. Следовая деполяризация переходит в следовую гиперполяризацию, представляющую собой временное увеличение мембранного потенциала выше исходного уровня. В миелинизированных нервных волокнах следовые потенциалы имеют более сложный характер. Следовая деполяризация может переходить в следовую гиперполяризацию, затем иногда возникает новая деполяризация, лишь после этого происходит полное восстановление потенциала покоя.

Ионный механизм возникновения потенциала действия

В основе потенциала действия лежат последовательно развивающиеся во времени изменения ионной проницаемости клеточной мембраны. При действии на клетку раздражителя проницаемость мембраны для ионов Na + резко повышается за счет активации (открывания) натриевых каналов (рис. 3.6.). При этом ионы Na + по концентрационному.

При этом ионы Na + по концентрационному градиенту интенсивно перемещаются из вне - во внутриклеточное пространство. Вхождению ионов Na + в клетку способствует и электростатическое взаимодействие. В итоге проницаемость мембраны для Na + становится в 20 раз больше проницаемости для ионов К + .

Поскольку поток Na + в клетку начинает превышать калиевый ток из клетки, то происходит постепенное снижение потенциала покоя,приводящее к реверсии - изменению знака мембранного потенциала. При этом внутренняя поверхность мембраны становится положительной по отношению к ее внешней поверхности. Указанные изменения мембранного потенциала соответствуют восходящей фазе потенциала действия (фазе деполяризации)

Мембрана характеризуется повышенной проницаемостью для ионов Na + лишь очень короткое время 0.2 - 0.5 мс. После этого проницаемость мембраны для ионов Na + вновь понижается, а для К + возрастает. В результате поток Na + внутрь клетки резко ослабляется, а ток К + из клетки усиливается (рис. 3.7.).


В течение потенциала действия в клетку поступает значительное количество Na + , а ионы К + покидают клетку. Восстановление клеточного ионного баланса осуществляется благодаря работе Na + ,К + - АТФазного насоса, активность которого возрастает при повышении внутренней концентрации ионов Na + и увеличении внешней концентрации ионов К + . Благодаря работе ионного насоса и изменению проницаемости мембраны для Na + и К + первоначальная их концентрация во внутри - и внеклеточном пространстве постепенно восстанавливается.

Итогом этих процессов и является реполяризация мембраны: внутреннее содержимое клетки вновь приобретает отрицательный заряд по отношению к внешней поверхности мембраны.

И потенциал действия большинства нейронов. Тем не менее, в основе любого потенциала действия лежат следующие явления:

  1. Мембрана живой клетки поляризована - её внутренняя поверхность заряжена отрицательно по отношению к внешней благодаря тому, что в растворе возле её внешней поверхности находится бо́льшее количество положительно заряженных частиц (катионов), а возле внутренней поверхности - бо́льшее количество отрицательно заряженных частиц (анионов).
  2. Мембрана обладает избирательной проницаемостью - её проницаемость для различных частиц (атомов или молекул) зависит от их размеров, электрического заряда и химических свойств.
  3. Мембрана возбудимой клетки способна быстро менять свою проницаемостъ для определённого вида катионов, вызывая переход положительного заряда с внешней стороны на внутреннюю (Рис.1 ).

Первые два свойства характерны для всех живых клеток. Третье же является особенностью клеток возбудимых тканей и причиной, по которой их мембраны способны генерировать и проводить потенциалы действия.

Фазы потенциала действия

  1. Предспайк - процесс медленной деполяризации мембраны до критического уровня деполяризации (местное возбуждение, локальный ответ).
  2. Пиковый потенциал, или спайк, состоящий из восходящей части (деполяризация мембраны) и нисходящей части (реполяризация мембраны).
  3. Отрицательный следовой потенциал - от критического уровня деполяризации до исходного уровня поляризации мембраны (следовая деполяризация).
  4. Положительный следовой потенциал - увеличение мембранного потенциала и постепенное возвращение его к исходной величине (следовая гиперполяризация).

Общие положения

Поляризация мембраны живой клетки обусловлена отличием ионного состава с её внутренней и наружной стороны. Когда клетка находится в спокойном (невозбуждённом) состоянии, ионы по разные стороны мембраны создают относительно стабильную разность потенциалов, называемую потенциалом покоя . Если ввести внутрь живой клетки электрод и измерить мембранный потенциал покоя, он будет иметь отрицательное значение (порядка −70 - −90 мВ). Это объясняется тем, что суммарный заряд на внутренней стороне мембраны существенно меньше, чем на внешней, хотя с обеих сторон содержатся и катионы , и анионы . Снаружи - на порядок больше ионов натрия , кальция и хлора , внутри - ионов калия и отрицательно заряженных белковых молекул, аминокислот, органических кислот, фосфатов , сульфатов . Надо понимать, что речь идёт именно о заряде поверхности мембраны - в целом среда и внутри, и снаружи клетки заряжена нейтрально.

Потенциал мембраны может изменяться под действием различных стимулов. Искусственным стимулом может служить электрический ток , подаваемый на внешнюю или внутреннюю сторону мембраны через электрод. В естественных условиях стимулом часто служит химический сигнал от соседних клеток, поступающий через синапс или путём диффузной передачи через межклеточную среду. Смещение мембранного потенциала может происходить в отрицательную (гиперполяризация ) или положительную (деполяризация ) сторону.

В нервной ткани потенциал действия, как правило, возникает при деполяризации - если деполяризация мембраны нейрона достигает некоторого порогового уровня или превышает его, клетка возбуждается, и от её тела к аксонам и дендритам распространяется волна электрического сигнала. (В реальных условиях на теле нейрона обычно возникают постсинаптические потенциалы, которые сильно отличаются от потенциала действия по своей природе - например, они не подчиняются принципу «всё или ничего». Эти потенциалы преобразуются в потенциал действия на особом участке мембраны - аксонном холмике, так что потенциал действия не распространяется на дендриты).

Рис. 3. Простейшая схема, демонстрирующая мембрану с двумя натриевыми каналами в открытом и закрытом состоянии, соответственно

Это обусловлено тем, что на мембране клетки находятся ионные каналы - белковые молекулы, образующие в мембране поры, через которые ионы могут проходить с внутренней стороны мембраны на наружную и наоборот. Большинство каналов ионоспецифичны - натриевый канал пропускает практически только ионы натрия и не пропускает другие (это явление называют селективностью). Мембрана клеток возбудимых тканей (нервной и мышечной) содержит большое количество потенциал-зависимых ионных каналов, способных быстро реагировать на смещение мембранного потенциала. Деполяризация мембраны в первую очередь вызывает открытие потенциал-зависимых натриевых каналов. Когда одновременно открывается достаточно много натриевых каналов, положительно заряженные ионы натрия устремляются через них на внутреннюю сторону мембраны. Движущая сила в данном случае обеспечивается градиентом концентрации (с внешней стороны мембраны находится намного больше положительно заряженных ионов натрия, чем внутри клетки) и отрицательным зарядом внутренней стороны мембраны (см. Рис. 2). Поток ионов натрия вызывает ещё бо́льшее и очень быстрое изменение мембранного потенциала, которое и называют потенциалом действия (в специальной литературе обозначается ПД).

Согласно закону «всё-или-ничего» мембрана клетки возбудимой ткани либо не отвечает на стимул совсем, либо отвечает с максимально возможной для неё на данный момент силой. То есть, если стимул слишком слаб и порог не достигнут, потенциал действия не возникает совсем; в то же время, пороговый стимул вызовет потенциал действия такой же амплитуды , как и стимул, превышающий пороговый. Это отнюдь не означает, что амплитуда потенциала действия всегда одинакова - один и тот же участок мембраны, находясь в разных состояниях, может генерировать потенциалы действия разной амплитуды.

После возбуждения нейрон на некоторое время оказывается в состоянии абсолютной рефрактерности , когда никакие сигналы не могут его возбудить снова, затем входит в фазу относительной рефрактерности , когда его могут возбудить исключительно сильные сигналы (при этом амплитуда ПД будет ниже, чем обычно). Рефрактерный период возникает из-за инактивации быстрого натриевого тока, то есть инактивации натриевых каналов (см. ниже).

Распространение потенциала действия

Распространение потенциала действия по немиелинизированным волокнам

По ходу ПД каналы переходят из состояния в состояние: у Na + каналов основных состояний три - закрытое, открытое и инактивированное (в реальности дело сложнее, но этих трёх достаточно для описания), у K + каналов два - закрытое и открытое.

Поведение каналов, участвующих в формировании ПД, описывается через проводимость и высчиляется через коэффициенты переноса (трансфера).

Коэффициенты переноса были выведены Ходжкиным и Хаксли.

Проводимость для калия G K на единицу площади

Проводимость для натрия G Na на единицу площади

рассчитывается сложнее, поскольку, как уже было сказано, у потенциал-зависимых Na+ каналов, помимо закрытого/открытого состояний, переход между которыми описывается параметром , есть ещё инактивированное/не-инактивированное состояния, переход между которыми описывается через параметр

, ,
где: где:
- коэффициент трансфера из закрытого в открытое состояние для Na+ каналов ; - коэффициент трансфера из инактивированного в не-инактивированное состояние для Na+ каналов ;
- коэффициент трансфера из открытого в закрытое состояние для Na+ каналов ; - коэффициент трансфера из не-инактивированного в инактивированное состояние для Na+ каналов ;
- фракция Na+ каналов в открытом состоянии; - фракция Na+ каналов в не-инактивированном состоянии;
- фракция Na+ каналов в закрытом состоянии - фракция Na+ каналов в инактивированном состоянии.

См. также

Литература


Wikimedia Foundation . 2010 .

Исследования Ходжкина и Хаксли показали, что при возбуждении аксона кальмара возникает быстрое колебание мембранного потенциала, которое на экране осциллографа имело форму пика. Они назвали это колебание потенциалом действия (ПД). Так как электрический ток для возбудимых мембран является адекватным раздражителем, ПД можно вызвать, поместив на наружную поверхность мембраны катод, а внутреннюю анод. При токе пороговой силы МП снижается до критического уровня деполяризации (КУД), при котором начинается генерация потенциала действия.

На кривой потенциала действия выделяют следующие фазы:

·1.Локальный ответ (местная деполяризация), предшествующий развитию ПД.

·2.Фаза деполяризации. Во время этой фазы МП быстро уменьшается и достигает нулевого уровня. Уровень деполяризации растет выше 0. Поэтому мембрана приобретает противоположный заряд - внутри она становится положительной, а снаружи отрицательной. Явление смены заряда мембраны называется реверсией мембранного потенциала.

·3.Фаза реполяризации. Она начинается при достижении определенного уровня МП.

·4.Фаза следовой деполяризации. Период, когда возвращение МП к потенциалу покоя временно задерживается. Он длится 15-30 мсек.

·5.Фаза следовой гиперполяризации или следового положительного потенциала. В эту фазу, МП на некоторое время становится выше исходного уровня ПП. Ее длительность 250-300 мсек.

Возникновение ПД обусловлено изменением ионной проницаемости мембраны при возбуждении. В период локального ответа открываются медленные натриевые каналы, а быстрые остаются закрытыми, возникает временная самопроизвольная деполяризация. Когда МП достигает критического уровня, закрытые активационные ворота натриевых каналов открываются и ионы натрия лавинообразно устремляются в клетку, вызывая нарастающую деполяризацию. В эту фазу открываются и быстрые и медленные натриевые каналы.

Когда величина деполяризация приближается к равновесному потенциалу для ионов натрия (+20 мВ). сила концентрационного градиента натрия значительно уменьшается. Одновременно начинается процесс инактивации быстрых натриевых каналов и снижения натриевой проводимости мембраны. Деполяризация прекращается. Резко усиливается выход ионов калия. В некоторых клетках это происходит из-за активации специальных каналов калиевого выходящего тока. Этот ток, направленный из клетки, служит для быстрого смещения МП к уровню потенциала покоя. Т.е. начинается фаза реполяризации.

Возникновение фазы следовой деполяризации объясняется тем, что небольшая часть медленных натриевых каналов остается открытой.

Следовая гиперполяризация связана с повышенной, после ПД, калиевой проводимостью мембраны и тем, что более активно работает натрий-калиевый насос.

Изменяя проводимость быстрых натриевых и калиевых каналов можно влиять на генерацию ПД, а следовательно на возбуждение клеток. Это используется в клинике.Чем выше скорость распространения ПД по мембране клетки, ткани, тем выше ее проводимость.

Потенциал действия (ПД) -- это электрофизиологический процесс, выражающийся в быстром колебании мембранного потенциала покоя вследствие перемещения ионов в клетку и из клетки и способный распространяться без декремента (без затухания). ПД обеспечивает передачу сигналов между нервными клетками, между нервными центрами и рабочими органами; в мышцах ПД обеспечивает процесс электромеханического сопряжения. Графическое изображение ПД показано на рис.1.

Рис. 1.

а -- потенциал действия, его фазы: 1 -- деполяризация; 2 -- инверсия (овершут); 3 -- реполяризация; б -- натриевые ворота (h-1 -- в состоянии покоя клетки, h-2 -- восходящая, h-3 -- нисходящая части ПД); в -- калиевые ворота (1 в состоянии покоя клетки, 2 -- в состоянии возбуждения). Знаки «плюс» (+) и «минус» (--) отражают заряд внутри и вне клетки в различные фазы ПД.

Характеристика ПД. Величина ПД колеблется в пределах 80-- 130 мВ; длительность пика ПД нервного волокна 0,5--1 мс, волокна скелетной мышцы -- до 10 мс (с учетом замедления деполяризации в ее конце), длительность ПД сердечной мышцы 300--400 мс. Амплитуда ПД не зависит от силы раздражения, она всегда максимальна для данной клетки в конкретных условиях: ПД подчиняется закону «все или ничего», но не подчиняется закону силовых отношений, т. е. закону силы. При малом раздражении клетки ПД либо совсем не возникает, либо достигает максимальной величины, если раздражение является пороговым или сверхпороговым. Следует отметить, что слабое (подпороговое) раздражение может вызвать локальный потенциал. Он подчиняется закону силы: с увеличением силы стимула величина его также возрастает.

В составе ПД различают три фазы: 1) деполяризацию, т. е. исчезновение заряда клетки (уменьшение мембранного потенциала до нуля); 2) инверсию, т.е. изменение заряда клетки на обратный, когда внутренняя сторона мембраны клетки заряжается положительно, а внешняя -- отрицательно; 3) реполяризацию, т. е. восстановление исходного заряда клетки, когда внутри клетки заряд снова становится отрицательным, а снаружи -- положительным.

Механизм возникновения ПД. Если действие раздражителя на клеточную мембрану приводит к началу развития ПД, далее сам процесс развития ПД вызывает фазовые изменения проницаемости клеточной мембраны, что обеспечивает быстрое движение Nа + в клетку, а К + -- из клетки. Это наиболее часто встречаемый вариант возникновения ПД. Величина мембранного потенциала при этом сначала уменьшается до нуля, затем заряд мембраны меняется на противоположный, а далее он восстанавливается до исходного уровня. Отмеченные изменения мембранного потенциала предстают в виде пикового потенциала -- ПД, возникающего вследствие накопленных и поддерживаемых ионными насосами градиентов концентраций ионов внутри и вне клетки, т.е. за счет потенциальной энергии в виде электрохимических градиентов ионов. Если заблокировать процесс выработки энергии, генерация ПД некоторое время сохраняется, но после исчезновения градиентов концентраций ионов (устранения потенциальной энергии) клетка генерировать ПД не будет. Рассмотрим фазы ПД.

Существует много различных названий фаз ПД (единых терминов нет). Наиболее корректны названия фаз ПД, в которых заложена общая идея изменения величин и знака заряда клетки: 1) фаза деполяризации -- процесс снижения заряда клетки до нуля; 2) фаза инверсии -- изменение заряда клетки на противоположный, т.е. весь период ПД, когда внутри клетки заряд положительный, а снаружи отрицательный; 3) фаза реполяризации -- восстановление заряда клетки до исходной величины (возврат к потенциалу покоя).

Фаза деполяризации (см. рис.1,а,1). При действии деполяризующего раздражителя на клетку, например электрического тока, начальная частичная деполяризация клеточной мембраны происходит без изменения ее проницаемости для ионов. Когда деполяризация достигает примерно 50% пороговой величины (50% порогового потенциала), возрастает проницаемость мембраны для Nа + , причем в первый момент сравнительно медленно. Естественно, что скорость входа Nа + в клетку при этом невелика. В этот период, как и во время всей первой фазы (деполяризации), движущей силой, обеспечивающей вход Nа + в клетку, являются концентрационный и электрический градиенты. Клетка внутри заряжена отрицательно (разноименные заряды притягиваются друг к другу), а концентрация Nа + вне клетки в 10-12 раз больше, чем внутри клетки. Условием, обеспечивающим вход Nа + в клетку, является увеличение проницаемости клеточной мембраны, которая определяется состоянием воротного механизма Nа + -каналов (в некоторых клетках, в частности в кардиомиоцитах и волокнах гладкой мышцы, важную роль в возникновении ПД играют управляемые каналы для Са 2+). Длительность пребывания электроуправляемого канала в открытом состоянии зависит от величины мембранного потенциала. Суммарный ток ионов в любой момент определяется числом открытых каналов клеточной мембраны. Часть ионного канала, обращенная во внеклеточное пространство, отличается от части канала, обращенной внутрь клетки. Воротный механизм Nа + -каналов расположен на внешней и внутренней сторонах клеточной мембраны, воротный механизм К + -каналов -- на внутренней (К + движется из клетки наружу). В каналах для Nа + имеются активационные m-ворота, которые расположены с внешней стороны клеточной мембраны (Nа + движется внутрь клетки во время ее возбуждения), и инактивационные h-ворота, расположенные с внутренней стороны клеточной мембраны. В условиях покоя активационные m-ворота закрыты, инактивационные h-ворота преимущественно (около 80%) открыты (см. рис.1,б,1); закрыты также калиевые активационные ворота (см. рис.1,в,1), инактивационных ворот для К + нет.

Иногда m-ворота называют быстрыми, h-ворота медленными, поскольку они в процессе возбуждения клетки реагируют позже, нежели m-ворота. Однако более поздняя реакция h-ворот связана с изменением заряда клетки, как и m-ворот, которые открываются в процессе деполяризации клеточной мембраны. Закрываются h-ворота в фазу инверсии, когда заряд внутри клетки становится положительным, что и является причиной их закрытия. При этом нарастание пика ПД прекращается. Поэтому m -ворота лучше назвать ранними, а h -ворота -- поздними.

Когда деполяризация клетки достигает критической величины (Е кр, критический уровень деполяризации -- КУД), которая обычно составляет --50 мВ (возможны и другие величины), проницаемость мембраны для Nа + резко возрастает: открывается большое число потенциалзависимых m-ворот Nа + -каналов (см. рис.1,б,2) и Nа + лавиной устремляется в клетку. Через один открытый Nа + - канал за 1 мс проходит до 6000 ионов. В результате интенсивного тока Nа + внутрь клетки процесс деполяризации проходит очень быстро. Развивающаяся деполяризация клеточной мембраны вызывает дополнительное увеличение ее проницаемости и, естественно, проводимости Nа + : открываются все новые и новые активационные m-ворота Nа + -каналов, что придает току Nа + в клетку характер регенеративного процесса. В итоге ПП исчезает, т. е. становится равным нулю. Фаза деполяризации на этом заканчивается.

Фаза инверсии. Восходящая часть. После исчезновения ПП вход в клетку Nа + продолжается (m -ворота Nа + - каналов еще открыты), поэтому число положительных ионов в клетке превосходит число отрицательных ионов, заряд внутри клетки становится положительным, снаружи -- отрицательным. Процесс перезарядки мембраны представляет собой вторую фазу потенциала действия -- фазу инверсии (см. рис.1,а,2). Теперь электрический градиент препятствует входу Nа + внутрь клетки (положительные заряды отталкиваются друг от друга), проводимость снижается. Тем не менее, некоторое время (доли миллисекунды) Nа + продолжает входить в клетку, о чем свидетельствует продолжающееся нарастание величины ПД. Это означает, что концентрационный градиент, обеспечивающий движение Nа + в клетку, сильнее электрического, препятствующего входу Nа + в клетку. Во время деполяризации мембраны увеличивается проницаемость ее и для Са 2+ , который также идет в клетку, но в нервных волокнах, нейронах и клетках скелетной мускулатуры роль Са 2+ в развитии ПД мала. В клетках гладкой мышцы и миокарда его роль существенна. Таким образом, вся восходящая часть пика ПД в большинстве случаев обеспечивается в основном входом Nа + в клетку.

Нисходящая составляющая фаза инверсии. Примерно через 0,5-- 2 мс и более после начала деполяризации (это время зависит от вида клетки) рост ПД прекращается в результате закрытия натриевых инактивационных h-ворот (см. рис.1) и открытия ворот К + -каналов, т. е. вследствие увеличения проницаемости К + и резкого возрастания выхода его из клетки (см. рис.1,в,2). Препятствует также росту пика ПД снижение электрического градиента Nа + (клетка внутри в этот момент заряжена положительно), а также выход К + из клетки по каналам утечки. Поскольку К + находится преимущественно внутри клетки, он, согласно концентрационному градиенту, начинает быстро выходить из нее, вследствие чего уменьшается число положительно заряженных ионов в клетке. Заряд клетки снова начинает уменьшаться. Во время нисходящей составляющей фазы инверсии выходу К + из клетки способствует также и электрический градиент. К + выталкивается положительным зарядом из клетки и притягивается отрицательным зарядом снаружи клетки. Так продолжается до полного исчезновения положительного заряда внутри клетки (до конца фазы инверсии, см. рис.1,а,2, пунктирная линия), когда начинается следующая фаза ПД -- фаза реполяризации. Калий выходит из клетки не только по управляемым каналам, которые открыты, но и по неуправляемым, т.е. каналам утечки, что несколько замедляет ход восходящей части ПД и ускоряет ход нисходящей составляющей ПД.

Изменение мембранного потенциала покоя ведет к последовательному открытию или закрытию электроуправляемых ворот ионных каналов и движению ионов согласно электрохимическому градиенту -- возникновению ПД. Все фазы являются регенеративными: необходимо только достичь критического уровня деполяризации, далее ПД развивается за счет потенциальной энергии клетки в виде электрохимических градиентов, т. е. вторично-активно.

Амплитуда ПД складывается из величины ПП и величины фазы инверсии, составляющей у разных клеток 10--50 мВ. Если мембранный ПП мал, амплитуда ПД этой клетки небольшая.

Фаза реполяризации. (см. рис.1,а,3) связана с тем, что проницаемость клеточной мембраны для К + все еще высока (активационные ворота калиевых каналов открыты), К + продолжает быстро выходить из клетки согласно концентрационному градиенту. Поскольку клетка теперь снова внутри имеет отрицательный заряд, а снаружи -- положительный (см. рис.1,а,3), электрический градиент препятствует выходу К + из клетки, что снижает его проводимость, хотя он продолжает выходить. Это объясняется тем, что действие концентрационного градиента выражено значительно сильнее электрического градиента. Таким образом, вся нисходящая часть пика ПД обусловлена выходом К + из клетки. Нередко в конце ПД наблюдается замедление реполяризации, что объясняется уменьшением проницаемости клеточной мембраны для К + и замедлением выхода его из клетки в результате закрытия ворот К + -каналов. Следующая причина замедления тока К из клетки связана с возрастанием положительного потенциала наружной поверхности клетки и формированием противоположно направленного электрического градиента.

Таким образом, главную роль в возникновении ПД играет Nа + , входящий в клетку при повышении проницаемости клеточной мембраны и обеспечивающий всю восходящую часть пика ПД. При замене Nа + в среде на другой ион, например холин, ПД в нервной и мышечной клетках скелетной мускулатуры не возникает. Однако проницаемость мембраны для К + тоже играет важную роль. Если предотвратить повышение проницаемости для К + тетраэтиламмонием, мембрана после ее деполяризации реполяризуется гораздо медленнее, только за счет медленных неуправляемых каналов (каналов утечки ионов), через которые К + будет выходить из клетки.

Роль Са 2+ в возникновении ПД в нервных и мышечных клетках скелетной мускулатуры незначительна. Однако Са 2+ играет важную роль в возникновении ПД сердечной и гладкой мышц, в передаче импульсов от одного нейрона к другому, от нервного волокна к мышечному, в обеспечении мышечного сокращения. Снижение содержания Са 2+ в крови на 50%, что иногда встречается в клинической практике, может привести к судорожным сокращениям скелетных мышц. Это объясняется значительным повышением возбудимости нервных и мышечных клеток в результате снижения ПП из-за уменьшения степени нейтрализации отрицательных фиксированных зарядов на поверхности клеточной мембраны и отрицательно заряженных карбоксильных групп интерстиция. Вследствие этого повышается реактивность нейронов, так как ПП приближается к Е кр, кроме того, начинается активация Nа + -каналов. В ответ на поступление самой незначительной импульсации нейроны начинают генерировать ПД в большом количестве, что проявляется в судорожных сокращениях скелетной мускулатуры. При этом нейроны ЦНС и нервные волокна могут разряжаться и спонтанно.

Следовые явления в процессе возбуждения клетки. В конце ПД, например в скелетной мышце, нередко наблюдается замедление реполяризации -- отрицательный следовой потенциал (рис.2,а).

Рис. 2. ПД двух клеток: а -- замедление фазы реполяризации; б -- следовые явления: 1 -- следовая гиперполяризация; 2 -- следовая деполяризация

Затем может быть зарегистрирована гиперполяризация клеточной мембраны, что более характерно для нервных клеток (рис.2,б,1). Это явление называют положительным следовым потенциалом. Вслед за ним может возникнуть частичная деполяризация клеточной мембраны, которую также называют отрицательным следовым потенциалом (рис.2,б,2), как и в случае замедления фазы реполяризации. Вслед за ПД возникают не потенциалы, а следовые явления -- сначала следовая гиперполяризация, а затем следовая деполяризация. Причем следовые явления возникают после полного восстановления мембранного потенциала до исходного уровня, но не как результат замедления фазы реполяризации, являющейся одной из фаз ПД. В сердечной и гладкой мышцах тоже наблюдается замедленная реполяризация -- плато, но на более высоком уровне.

Следовая гиперполяризация клеточной мембраны (рис. 2,б,1) обычно является следствием еще сохраняющейся повышенной проницаемости клеточной мембраны для К + , она характерна для нейронов. Активационные ворота К + -каналов еще не полностью закрыты, поэтому К + продолжает выходить из клетки согласно концентрационному градиенту, что и ведет к гиперполяризации клеточной мембраны. Постепенно проницаемость клеточной мембраны возвращается к исходной (натриевые и калиевые ворота возвращаются в исходное состояние), а мембранный потенциал становится таким же, каким он был до возбуждения клетки. Na + /К + -помпа непосредственно за фазы потенциала действия не отвечает, хотя она и продолжает работать во время развития ПД: ионы перемещаются с огромной скоростью согласно концентрационному и частично электрическому градиентам.

Следовая деполяризация (рис. 2,б,2) также характерна для нейронов, но может быть зарегистрирована и в клетках скелетной мышцы. Механизм следовой деполяризации изучен недостаточно. Возможно, она связана с кратковременным повышением проницаемости клеточной мембраны для Na + и входом его в клетку согласно концентрационному и электрическому градиентам.