Зависимость константы скорости реакции от температуры. Температурный коэффициент скорости химической реакции (правило Вант-Гоффа)

Задача № 1. Взаимодействие со свободным кислородом приводит к образованию высокотоксичного диоксида азота / /, хотя эта реакция в физиологических условиях протекает медленно и при низких концентрациях не играет существенной роли в токсическом повреждении клеток, но, однако патогенные эффекты резко возрастают при его гиперпродукции. Определите, во сколько раз возрастает скорость взаимодействия оксида азота (II) c кислородом при увеличении давления в смеси исходных газов в два раза, если скорость реакции описывается уравнением ?

Решение .

1. Увеличение давления вдвое равноценно двойному увеличению концентрации (с ) и . Поэтому скорости взаимодействия, соответствующие и ,примут в соответствии с законом действия масс выражения: и

Ответ . Скорость реакции увеличится в 8 раз.

Задача № 2. Считается, что концентрация хлора (зеленоватый газ с резким запахом) в воздухе выше 25 ppm опасна для жизни и здоровья, но, имеются данные, что если пациент восстановился после острого тяжелого отравления этим газом, то остаточных явлений не наблюдается. Определите, как изменится скорость реакции: , протекающей в газовой фазе, если увеличить в 3-и раза: концентрацию , концентрацию , 3) давление / /?

Решение .

1. Если обозначить концентрации и соответственно через и , то выражение для скорости реакции примет вид: .

2. После увеличения концентраций в 3-и раза они будут равны для и для . Поэтому выражение для скорости реакции примет вид: 1) 2)

3. Увеличение давления во столько же раз увеличивает концентрацию газообразных реагирующих веществ, поэтому

4. Увеличение скорости реакции по отношению к первоначальной определяется отношением соответственно: 1) , 2) , 3) .

Ответ . Скорость реакции увеличится в: 1) , 2) , 3) раза.

Задача № 3 . Как изменяется скорость взаимодействия исходных веществ при изменении температуры с до , если температурный коэффициент реакции равен 2,5?

Решение .

1. Температурный коэффициент показывает, как меняется скорость реакции при изменении температуры на каждые (правило Вант-Гоффа): .

2. Если же изменение температуры: , то с учетом того, что , получаем: . Отсюда, .

3. По таблице антилогарифмов находим: .

Ответ . При изменении температуры (т.е. при повышении) скорость увеличится в 67,7 раз.

Задача № 4 . Вычислите температурный коэффициент скорости реакции, зная, что с повышением температуры на скорость возрастает в 128 раз.

Решение .

1. Зависимость скорости химической реакции от температуры выражается эмпирическим правилом Вант-Гоффа:

.Решая уравнение относительно , находим: , . Следовательно, =2

Ответ . =2.

Задача № 5 . Для одной из реакций были определены две константы скорости: при 0,00670 и при 0,06857. Определите константу скорости этой же реакции при .

Решение .

1. По двум значениям констант скорости реакции, используя уравнение Аррениуса, определяем величину энергии активации реакции: . Для данного случая: Отсюда: Дж/моль.

2. Рассчитаем константу скорости реакции при , используя в расчетах константу скорости при и уравнение Аррениуса: . Для данного случая: и с учетом того, что: , получаем: . Следовательно,

Ответ .

Вычисление константы химического равновесия и определение направление смещения равновесия по принципу Ле-Шателье .

Задача №6. Двуокись углерода / / в отличие от моноксида углерода / / не нарушает физиологических функций и анатомической целостности живого организма и удушающий эффект их обусловлен лишь присутствием в высокой концентрации и снижением процентного содержания кислорода во вдыхаемом воздухе. Чему равна константа равновесия реакции / /: при температуре , выраженная через: а) парциальные давления реагирующих веществ ; б) их молярные концентрации , зная, что состав равновесной смеси выражается объемными долями: , и , а общее давление в системе составляет Па?

Решение .

1. Парциальное давление газа равно общему давлению, умноженному на объемную долю газа в смеси, поэтому:

2. Подставляя эти значения в выражение константы равновесия, получим:

3. Взаимосвязь между и устанавливается на основе уравнения Менделеева ­ Клапейрона для идеальных газов и выражается равенством: , где – разность между числом молей газообразных продуктов реакции и газообразных исходных веществ. Для данной реакции: . Тогда: .

Ответ . Па. .

Задача № 7. В каком направлении сместится равновесие в следующих реакциях:

3. ;

а) при повышении температуры, б) при понижении давления, в) при увеличении концентрации водорода?

Решение .

1. Химическое равновесие в системе устанавливается при постоянстве внешних параметров ( и др.). Если эти параметры меняются, то система выходит из состояния равновесия и начинает преобладать прямая (вправо) или обратная реакции (влево). Влияние различных факторов на смещение равновесия отражено в принципе Ле Шателье.

2. Рассмотрим влияние на вышеуказанные реакции всех 3-х факторов, влияющих на химическое равновесие.

а) При повышении температуры равновесие смещается в сторону эндотермической реакции, т.е. реакции, идущей с поглощением тепла . 1-я и 3-я реакции – экзотермические / /, следовательно, при повышении температуры равновесие сместится в сторону обратной реакции, а во 2-ой реакции / / – в сторону прямой реакции.

б) При понижении давления равновесие смещается в сторону возрастания числа молей газов, т.е. в сторону большего давления . В 1-ой и 3-ей реакциях в левой и правой частях уравнения будет одинаковое число молей газов (2-2 и 1-1 соответственно). Поэтому изменение давления не вызовет смещения равновесия в системе. Во 2-ой реакции в левой части 4 моля газов, в правой – 2 моля, поэтому при понижении давления равновесие сместится в сторону обратной реакции.

в) При увеличении концентрации компонентов реакции равновесие смещается в сторону их расхода. В 1-ой реакции водород находится в продуктах, и увеличение его концентрации усилит обратную реакцию, в ходе которой он расходуется. Во 2-ой и 3-ей реакциях водород входит в число исходных веществ, поэтому увеличение его концентрации смещает равновесие в сторону реакции, идущей с расходом водорода.

Ответ .

а) При повышении температуры в реакциях 1 и 3 равновесие будет смещено влево, а в реакции 2 – вправо.

б) На реакции 1 и 3 понижение давления не повлияет, а в реакции 2 – равновесие будет смещено влево.

в) Повышение температуры в реакциях 2 и 3 повлечет за собой смещение равновесия вправо, а в реакции 1 – влево.

1.2. Ситуационные задачи №№ с 7 по 21 для закрепления материала (выполнить в протокольной тетради).

Задача № 8. Как изменится скорость окисления глюкозы в организме при снижении температуры с до , если температурный коэффициент скорости реакции равен 4 ?

Задача № 9 .Используя приближенное правило Вант-Гоффа, вычислить, на сколько нужно повысить температуру, чтобы скорость реакции возросла в 80 раз? Температурный коэффициент скорости принять равным 3.

Задача № 10. Для практической остановки реакции применяют быстрое охлаждение реакционной смеси («замораживание реакции»). Определите, во сколько раз изменится скорость реакции при охлаждении реакционной смеси с 40 до , если температурный коэффициент реакции равен 2,7.

Задача № 11. Изотоп , применяющийся для лечения некоторых опухолей, имеет период полураспада 8,1 суток. Через какое время содержание радиоактивного йода в организме пациента уменьшится в 5 раз?

Задача № 12. Гидролиз некоторого синтетического гормона (фармпрепарата) является реакцией первого порядка с константой скорости 0,25 (). Как изменится концентрация этого гормона через 2 месяца?

Задача №13. Период полураспада радиоактивного равен 5600 лет. В живом организме за счет обмена веществ поддерживается постоянное количество . В останках мамонта содержание составило от исходного. Определите, когда жил мамонт?

Задача № 14. Период полураспада инсектицида (ядохимиката, применяемого для борьбы с насекомыми) составляет 6 месяцев. Некоторое количество его попало в водоем, где установилась концентрация моль/л. За какое время концентрация инсектицида понизится до уровня моль/л?

Задача №15. Жиры и углеводы окисляются с заметной скоростью при температуре 450 - 500°, а в живых организмах - при температуре 36 - 40°. В чем причина резкого уменьшения температуры, необходимой для окисления?

Задача № 16. Пероксид водорода разлагается в водных растворах на кислород и воду. Реакцию ускоряют как неорганический катализатор (ион ), так и биоорганический (фермент каталаза). Энергия активации реакции в отсутствие катализатора 75,4 кДж/моль. Ион снижает ее до 42 кДж/моль, а фермент каталаза - до 2 кДж/моль. Рассчитайте соотношение скоростей реакции в отсутствие катализатора в случаях присутствия и каталазы. Какой вывод можно сделать об активности фермента? Реакция протекает при температуре 27 °С.

Задача № 17 Константа скорости распада пенициллина при рации Дж/моль.

1.3. Контрольные вопросы

1. Объясните, что означают термины: скорость реакции, константа скорости?

2. Как выражается средняя и истинная скорость химических реакций?

3. Почему о скорости химических реакций имеет смысл говорить только для данного момента времени?

4. Сформулируйте определение обратимой и необратимой реакции.

5. Дайте определение закона действующих масс. В равенствах, выражающих этот закон, отражена ли зависимость скорости реакции от природы реагирующих веществ?

6. Как зависит скорость реакции от температуры? Что называется энергией активации? Что такое активные молекулы?

7. От каких факторов зависит скорость гомогенной и гетерогенной реакции? Приведите примеры.

8. Что такое порядок и молекулярность химических реакций? В каких случаях они не совпадают?

9. Какие вещества называются катализаторами? Каков механизм ускоряющего действия катализатора?

10. В чем заключается понятие «отравление катализатора»? Какие вещества называют ингибиторами?

11. Что называется химическим равновесием? Почему оно называется динамическим? Какие концентрации реагирующих веществ называют равновесными?

12. Что называют константой химического равновесия? Зависит ли она от природы реагирующих веществ, их концентрации, температуры, давления? Каковы особенности математической записи для константы равновесия в гетерогенных системах?

13. Что такое фармакокинетика лекарств?

14. Процессы, происходящие с лекарственным препаратом в организме, количественно характеризуются рядом фармакокинетических праметров. Приведите основные из них.

Факторы влияющие на протекание реакции

В организме человека протекают тысячи ферментативных реакций, проходящих в живой клетке. Однако в многостадийной цепи процессов достаточно велика разница между скоростями отдельных реакций. Так, синтезу в клетке молекул белка предшествует, по крайней мере, еще две стадии: синтез транспортной РНК и синтез рибосом. Но время, за которое удваивается концентрация молекул т-РНК, составляет 1,7 мин., молекулы белка - 17 мин., а рибосом - 170 мин. Скорость суммарного процесса медленной (лимитирующей) стадии, в нашем примере - скорость синтеза рибосом. Наличие лимитирующей реакции обеспечивает высокую надежность и гибкость управления тысячами реакций, происходящих в клетке. Достаточно держать под наблюдением и регулировать лишь наиболее медленные из них. Такой способ регулирования скорости многостадийного синтеза носит название принципа минимума. Он позволяет существенно упростить и сделать более надежной систему авторегулирования в клетке.

Классификации реакций, применяющиеся в кинетике: реакции, гомогенные, гетерогенные и микрогетерогенные; реакции простые и сложные (параллельные, последовательные, сопряженные, цепные). Молекулярность элементарного акта реакции. Кинетические уравнения. Порядок реакции. Период полупревращения


Микрогетерогенные реакции –


Молекулярность реакции определяется числом молекул, вступающих в химическое взаимодействие в элементарном акте реакции. По этому при­знаку реакции разделяются на мономолекулярные, бимолекулярные и тримолекулярные.

Тогда реакции типа А ->В будут являться мономолекулярными, например:

а) С 16 Н 34 (t°C) ->C g H 18 + С 8 Н 16 - реакция крекинга углеводородов;

б) CaC0 3 (t°C) ->СаО + С0 2 - термическое разложение карбоната кальция.
Реакции типа А + В -> С или 2А -> С - являются бимолекулярными, например:
а) С + 0 2 -> С0 2 ; б) 2Н 2 0 2 -> 2Н 2 0 + 0 2 и т. д.

Тримолекулярные реакции описываются общими уравнениями типа:

а) А + В + С Д; б) 2А + В Д; в) 3А Д.

Например: а) 2Н 2 + 0 2 2Н 2 0; б) 2NO + Н 2 N 2 0 + Н 2 0.

Скорость реакций в зависимости от молекулярности будет выражаться уравнениями: а) V = к С А - для мономолекулярной реакции; б) V = к С А С в или в) V = к С 2 А - для бимолекулярной реакции; г) V = к С С в С э д) V = к С 2 А С в или е) V = k С 3 А - для тримолекулярной реакции.


Молекулярность-число молекул, реагирующих в в одном элементарном химическом акте.

Нередко молекулярность реакции трудно установить, поэтому используют более формальный признак - порядок химической реакции.

Порядок реакции равен сумме показателей степеней концентраций в уравнении, выражающем зависимость скорости реакции от концентрации реагирующих веществ (кинетическом уравнении).

Порядок реакции чаще всего не совпадает с молекулярностью ввиду того, что механизм реакции, т. е. "элементарный акт" реакции (см. определение признака молекулярности), трудно установить.

Рассмотрим ряд примеров, иллюстрирующих указанное положение.

1.Скорость растворения кристаллов описывается уравнениями кинетики нулевого порядка, несмотря на мономолекулярность реакции: AgCl (TB) ->Ag + + CI", V = k C(AgCl (TB p= k"C(AgCl (ra }) - p - плотности и является постоянной величиной, т. е. скорость растворения не зависит от количества (концентрации) растворяемого вещества.

2.Реакция гидролиза сахарозы: СО + Н 2 0 -> С 6 Н 12 0 6 (глюкоза) + С 6 Н 12 0 6 (фруктоза) является бимолекулярной реакцией, но ее кинетика описывается кинетическим уравнением первого порядка: V=k*C cax , так как в условиях опытов, в том числе и в организме, концентрация воды есть величина постоянная С(Н 2 0) - const.

3.
Реакция разложения водородпероксида, протекающая с участием катали­заторов, как неорганических ионов Fe 3+ , Cu 2+ металлической платины, так и био­логических - ферментов, например каталазы, имеет общий вид:

2Н 2 0 2 -> 2Н 2 0 + О э т. е. является бимолекулярной.

Зависимость скорости реакции от концентрации. Кинетические уравнения реакций первого, второго и нулевого порядков. Экспериментальные методы определения скорости и константы скорости реакций.






Зависимость скорости реакции от температуры. Правило Вант - Гоффа. Температурный коэффициент скорости реакции и его особенности для биохимических процессов.


γ-температурный коэффициент скорости реакции.

Физический смысл величины γ заключается в том, что он показывает, во сколько раз изменяется скорость реакции при изменении температуры на каждые 10 градусов.


15.Понятие о теории активных соударении. Энергетический профиль реакции; энергия активации; уравнение Аррениуса. Роль стерического фактора. Понятие о теории переходного состояния.




Взаимосвязь константы скорости, энергии активации и температуры описывается уравнением Аррениуса: k T = k 0 *Ae~ E / RT , где к т и к 0 - константы скоростей при температуре Т и Т э е - основание натурального логарифма, А -стерический фактор.

Стерический фактор А определяет вероятность столкновения двух реагирую­щих частиц в активном центре молекулы. Этот фактор имеет особо важное значение для биохимических реакций с биополимерами. При кислотно-основных реакциях Н + -ион должен вступить в реакцию с концевой карбоксильной группой - СОО". Однако не всякое столкновение Н + -иона с молекулой белка приведет к данной реакции. Эффективны будут только те столкновения, которые непосредственно осуществляются в некоторых точках макромолекул, называемых активными центрами.

Из уравнения Аррениуса следует, что константа скорости тем выше, чем меньше величина энергии активации Е и выше температура Т процесса.

Скорость химической реакции зависит от температуры, причем при повышении температуры скорость реакции увеличивается. Голландский уч1ный Вант-Гофф показал, что при повышении температуры на 10 градусов скорость большинства реакций увеличивается в 2-4 раза;

VT 2 =VT 1 *y (T2-T1)/10

Где VT 2 и VT 1 – скорости реакции при температурах T 2 и T 1 ; у – температурный коэффициент скорости реакции, который показывает, во сколько раз увеличилась скорость реакции при повышении температуры на 10К.

При концентрации реагирующих веществ 1 моль/л скорость реакции численно равна константе скорости k. Тогда уравнение показывает, что константа скорости зависит от температуры так же, как и скорость процесса.

3. Напишите вариант реакции отщепления (элиминирования) с выделением галогенводорода .

C 2 H 5 Cl=C 2 H 4 +HCl

Билет №4

1. Что такое «атомная масса», «молекулярная масса», «моль вещества» и что принято за атомную единицу массы (а.е.м.)?

АТОМНАЯ МАССА - масса атома в атомных единицах массы (а. е. м.). За единицу а. е. м. принята 1/12 массы изотопа углерод- 12.

а.е.м. = 1/12 m 12 6 С = 1, 66 * 10 -24

МОЛЕКУЛЯРНАЯ МАССА - молярная масса соединения, отнесенная к 1/12 молярной массы атома углерода-12.

МОЛЬ - количество вещества, содержащее столько же частиц или структурных единиц (атомов, ионов, молекул, радикалов, электронов, эквивалентов и др.), что и в 12 а. е. м. изотопа углерода-12.

Формула увеличения скорости реакции в присутствии катализатора.

Изменить величину Еа (энергию активации) можно с помощью катализаторов. Вещества, принимающие участие, но не расходующиеся в процессе реакции, назваются катализаторами. Само это явление называется катализом. Увеличение скорости реакции в присутствии катализатора определяется формулой

В зависимости от того, находится ли катализатор в той же фазе, что и реагирующие вещества, или образует самостоятельную фазу, говорят о гомогенном или гетерогенном катализе. Механизм каталитического действия для них не одинков, однако и в том и в другом случае происходит ускорение реакции за счет снижения Еа. Существует ряд специфических катализаторов - ингибиторов, снижающих скорость реакции.

где -параметры каталитического процесса, V, k , Еа- некаталитического процесса.

Напишите реакции сгорания углеродсодержащих неорганических веществ в кислороде, указав окислитель и восстановитель, а также степени окисления углерода до и после реакции.

С – восстановитель, процесс окисления

О – окислитель, процесс восстановления

Билет № 5

1. Что такое «электроотрицательность», «валентность», «степень окисления» элемента и каковы основные правила их определения?

СТЕПЕНЬ ОКИСЛЕНИЯ - условный заряд атома элемента, полученный в предположении, что соединение состоит из ионов. Она может быть положительной, отрицательной, нулевой, дробной и обозначается арабской цифрой со знаком «+» или «-» в виде верхнего правого индекса символа элемента: С 1- , О 2- , Н + , Мg 2+ , N 3- , N 5+ , Сr 6+ .

Для определения степени окисления (с. о.) элемента в соединении (ионе) пользуются следующими правилами:

1 В простых веществах (Н2, S8, Р4) с. о. равна нулю.

2 Постоянную с. о. имеют щелочные (Э+) и щелочно-земельные (Э2+) элементы, а также фтор Р-.

3 Водород в большинстве соединений имеет с. о. Н+ (Н2О, СН4, НС1), в гидридах - Н- (-NaН, СаН2); с. о. кислорода, как правило, равна -2 (О2-), в пероксидах (-О-О-) - 1 (О-).

4 В бинарных соединениях неметаллов отрицательная с. о. приписывается элементу, расположенному справа).

5 Алгебраическая сумма с. о. молекулы равна нулю, иона - его заряду.

Способность атома присоединять или замещать определенное число других атомов называют ВАЛЕНТНОСТЬЮ. Мерой валентности считают число атомов водорода или кислорода, присоединенных к элементу, при условии, что водород одно- , а кислород двухвалентен.

Из качественных соображений понятно, что скорость реакций должна увеличиваться с ростом температуры, т.к. при этом возрастает энергия сталкивающихся частиц и повышается вероятность того, что при столкновении произойдет химическое превращение. Для количественного описания температурных эффектов в химической кинетике используют два основных соотношения - правило Вант-Гоффа и уравнение Аррениуса.

Правило Вант-Гоффа заключается в том, что при нагревании на 10 о С скорость большинства химических реакций увеличивается в 2 4 раза. Математически это означает, что скорость реакции зависит от температуры степенным образом:

, (4.1)

где - температурный коэффициент скорости ( = 24). Правило Вант-Гоффа является весьма грубым и применимо только в очень ограниченном интервале температур.

Гораздо более точным является уравнение Аррениуса , описывающее температурную зависимость константы скорости:

, (4.2)

где R - универсальная газовая постоянная; A - предэкспоненциальный множитель, который не зависит от температуры, а определяется только видом реакции; E A - энергия активации , которую можно охарактеризовать как некоторую пороговую энергию: грубо говоря, если энергия сталкивающихся частиц меньше E A , то при столкновении реакция не произойдет, если энергия превышает E A , реакция произойдет. Энергия активации не зависит от температуры.

Графически зависимость k (T ) выглядит следующим образом:

При низких температурах химические реакции почти не протекают: k (T ) 0. При очень высоких температурах константа скорости стремится к предельному значению: k (T )A . Это соответствует тому, что все молекулы являются химически активными и каждое столкновение приводит к реакции.

Энергию активации можно определить, измерив константу скорости при двух температурах. Из уравнения (4.2) следует:

. (4.3)

Более точно энергию активации определяют по значениям константы скорости при нескольких температурах. Для этого уравнение Аррениуса (4.2) записывают в логарифмической форме

и записывают экспериментальные данные в координатах ln k - 1/T . Тангенс угла наклона полученной прямой равен -E A / R .

Для некоторых реакций предэкспоненциальный множитель слабо зависит от температуры. В этом случае определяют так называемую опытную энергию активации :

. (4.4)

Если предэкспоненциальный множитель - постоянный, то опытная энергия активации равна аррениусовской энергии активации: E оп = E A .

Пример 4-1. Пользуясь уравнением Аррениуса, оцените, при каких температурах и энергиях активации справедливо правило Вант-Гоффа.

Решение. Представим правило Вант-Гоффа (4.1) как степенную зависимость константы скорости:

,

где B - постоянная величина. Сравним это выражение с уравнением Аррениуса (4.2), приняв для температурного коэффициента скорости значение ~ e = 2.718:

.

Возьмем натуральный логарифм обеих частей этого приближенного равенства:

.

Продифференцировав полученное соотношение по температуре, найдем искомую связь связь между энергией активации и температурой:

Если энергия активации и температура примерно удовлетворяют этому соотношению, то правилом Вант-Гоффа для оценки влияния температуры на скорость реакции пользоваться можно.

Пример 4-2. Реакция первого порядка при температуре 70 о С завершается на 40% за 60 мин. При какой температуре реакция завершится на 80% за 120 мин, если энергия активации равна 60 кДж/моль?

Решение. Для реакции первого порядка константа скорости выражается через степень превращения следующим образом:

,

где a = x /a - степень превращения. Запишем это уравнение при двух температурах с учетом уравнения Аррениуса:

где E A = 60 кДж/моль, T 1 = 343 K, t 1 = 60 мин, a 1 = 0.4, t 2 = 120 мин, a 2 = 0.8. Поделим одно уравнение на другое и прологарифмируем:

Подставляя в это выражение приведенные выше величины, находим T 2 = 333 К = 60 о С.

Пример 4-3. Скорость бактериального гидролиза мышц рыб удваивается при переходе от температуры -1.1 о С к температуре +2.2 о С. Оцените энергию активации этой реакции.

Решение. Увеличение скорости гидролиза в 2 раза обусловлено увеличением константы скорости: k 2 = 2k 1 . Энергию активации по отношению констант скорости при двух температурах можно определить из уравнения (4.3) с T 1 = t 1 + 273.15 = 272.05 K, T 2 = t 2 + 273.15 = 275.35 K:

130800 Дж/моль = 130.8 кДж/моль.

4-1. При помощи правила Вант-Гоффа вычислите, при какой температуре реакция закончится через 15 мин, если при 20 о С на это требуется 2 ч. Температурный коэффициент скорости равен 3.(ответ)

4-2. Время полураспада вещества при 323 К равно 100 мин, а при 353 К - 15 мин. Определите температурный коэффициент скорости.(ответ)

4-3. Какой должна быть энергия активации, чтобы скорость реакции увеличивалась в 3 раза при возрастании температуры на 10 0 С а) при 300 К; б) при 1000 К?(ответ)

4-4. Реакция первого порядка имеет энергию активации 25 ккал/моль и предэкспоненциальный множитель 5 . 10 13 сек -1 . При какой температуре время полураспада для данной реакции составит: а) 1 мин; б) 30 дней?(ответ)

4-5. В каком из двух случаев константа скорости реакции увеличивается в большее число раз: при нагревании от 0 о С до 10 о С или при нагревании от 10 о С до 20 о С? Ответ обоснуйте с помощью уравнения Аррениуса.(ответ)

4-6. Энергия активации некоторой реакции в 1.5 раза больше, чем энергия активации другой реакции. При нагревании от T 1 до T 2 константа скорости второй реакции увеличилась в a раз. Во сколько раз увеличилась константа скорости первой реакции при нагревании от T 1 до T 2 ?(ответ)

4-7. Константа скорости сложной реакции выражается через константы скорости элементарных стадий следующим образом:

Выразите энергию активации и предэкспоненциальный множитель сложной реакции через соответствующие величины, относящиеся к элементарным стадиям.(ответ)

4-8. В необратимой реакции 1-го порядка за 20 мин при 125 о С степень превращения исходного вещества составила 60%, а при 145 o C такая же степень превращения была достигнута за 5.5 мин. Найдите константы скорости и энергию активации данной реакции.(ответ)

4-9. Реакция 1-го порядка при температуре 25 о С завершается на 30% за 30 мин. При какой температуре реакция завершится на 60% за 40 мин, если энергия активации равна 30 кДж/моль?(ответ)

4-10. Реакция 1-го порядка при температуре 25 о С завершается на 70% за 15 мин. При какой температуре реакция завершится на 50% за 15 мин, если энергия активации равна 50 кДж/моль?(ответ)

4-11. Константа скорости реакции первого порядка равна 4.02 . 10 -4 с -1 при 393 К и 1.98 . 10 -3 с -1 при 413 К. Рассчитайте предэкспоненциальный множитель для этой реакции.(ответ)

4-12. Для реакции H 2 + I 2 2HI константа скорости при температуре 683 К равна 0,0659 л/(моль. мин), а при температуре 716 К - 0,375 л/(моль. мин). Найдите энергию активации этой реакции и константу скорости при температуре 700 К.(ответ)

4-13. Для реакции 2N 2 O 2N 2 + O 2 константа скорости при температуре 986 К равна 6,72 л/(моль. мин), а при температуре 1165 К - 977,0 л/(моль. мин). Найдите энергию активации этой реакции и константу скорости при температуре 1053,0 К.(ответ)

4-14. Трихлорацетат-ион в ионизирующих растворителях, содержащих H + , разлагается по уравнению

H + + CCl 3 COO - CO 2 + CHCl 3

Стадией, определяющей скорость реакции, является мономолекулярный разрыв связи C- C в трихлорацетат-ионе. Реакция протекает по первому порядку, и константы скорости имеют следующие значения: k = 3.11 . 10 -4 с -1 при 90 о С, k = 7.62 . 10 -5 с -1 при 80 о С. Рассчитайте а) энергию активации, б) константу скорости при 60 о С.(ответ)

4-15. Для реакции CH 3 COOC 2 H 5 + NaOH ѕ CH 3 COONa + C 2 H 5 OH константа скорости при температуре 282,6 К равна 2,307 л/(моль. мин), а при температуре 318,1 К - 21,65 л/(моль. мин). Найдите энергию активации этой реакции и константу скорости при температуре 343 К.(ответ)

4-16. Для реакции C 12 H 22 O 11 + H 2 O C 6 H 12 O 6 + C 6 H 12 O 6 константа скорости при температуре 298,2 К равна 0,765 л/(моль. мин), а при температуре 328,2 К - 35,5 л/(моль. мин). Найдите энергию активации этой реакции и константу скорости при температуре 313,2 К.(ответ)

4-17. Вещество разлагается двумя параллельными путями с константами скорости k 1 и k 2 . Какова разность энергий активации этих двух реакций, если при 10 o C k 1 /k 2 = 10, а при 40 o C k 1 /k 2 = 0.1?(ответ)

4-18. В двух реакциях одинакового порядка разница энергий активации составляет E 2 - E 1 = 40 кДж/моль. При температуре 293 К отношение констант скорости равно k 1 /k 2 = 2. При какой температуре константы скорости сравняются?(ответ)

4-19. Разложение ацетондикарбоновой кислоты в водном растворе - реакция первого порядка. Измерены константы скорости этой реакции при разных температурах:

Рассчитайте энергию активации и предэкспоненциальный множитель. Чему равен период полураспада при 25 о С?