Как посчитать среднее значение. Средние показатели

В большинстве случаев данные концентрируются вокруг некоей центральной точки. Таким образом, чтобы описать любой набор данных, достаточно указать средне значение. Рассмотрим последовательно три числовые характеристики, которые используются для оценки среднего значения распределения: среднее арифметическое, медиана и мода.

Среднее арифметическое

Среднее арифметическое (часто называемое просто средним) - наиболее распространенная оценка среднего значения распределения. Она является результатом деления суммы всех наблюдаемых числовых величин на их количество. Для выборки, состоящей из чисел Х 1 , Х 2 , …, Х n , выборочное среднее (обозначаемое символом ) равно = (Х 1 + Х 2 + … + Х n ) / n , или

где - выборочное среднее, n - объем выборки, X i – i-й элемент выборки.

Скачать заметку в формате или , примеры в формате

Рассмотрим вычисление среднего арифметического значения пятилетней среднегодовой доходности 15 взаимных фондов с очень высоким уровнем риска (рис. 1).

Рис. 1. Среднегодовая доходность 15 взаимных фондов с очень высоким уровнем риска

Выборочное среднее вычисляется следующим образом:

Это хороший доход, особенно по сравнению с 3–4% дохода, который получили вкладчики банков или кредитных союзов за тот же период времени. Если упорядочить значения доходности, то легко заметить, что восемь фондов имеют доходность выше, а семь - ниже среднего значения. Среднее арифметическое играет роль точки равновесия, так что фонды с низкими доходами уравновешивают фонды с высокими доходами. В вычислении среднего задействованы все элементы выборки. Ни одна из других оценок среднего значения распределения не обладает этим свойством.

Когда следует вычислять среднее арифметическое. Поскольку среднее арифметическое зависит от всех элементов выборки, наличие экстремальных значений значительно влияет на результат. В таких ситуациях среднее арифметическое может исказить смысл числовых данных. Следовательно, описывая набор данных, содержащий экстремальные значения, необходимо указывать медиану либо среднее арифметическое и медиану. Например, если удалить из выборки доходность фонда RS Emerging Growth, выборочное среднее доходности 14 фондов уменьшится почти на 1% и составит 5,19%.

Медиана

Медиана представляет собой срединное значение упорядоченного массива чисел. Если массив не содержит повторяющихся чисел, то половина его элементов окажется меньше, а половина - больше медианы. Если выборка содержит экстремальные значения, для оценки среднего значения лучше использовать не среднее арифметическое, а медиану. Чтобы вычислить медиану выборки, ее сначала необходимо упорядочить.

Эта формула неоднозначна. Ее результат зависит от четности или нечетности числа n :

  • Если выборка содержит нечетное количество элементов, медиана равна (n+1)/2 -му элементу.
  • Если выборка содержит четное количество элементов, медиана лежит между двумя средними элементами выборки и равна среднему арифметическому, вычисленному по этим двум элементам.

Чтобы вычислить медиану выборки, содержащей данные о доходности 15 взаимных фондов с очень высокий уровнем риска, сначала необходимо упорядочить исходные данные (рис. 2). Тогда медиана будет напротив номера среднего элемента выборки; в нашем примере №8. В Excel есть специальная функция =МЕДИАНА(), которая работает и с неупорядоченными массивами тоже.

Рис. 2. Медиана 15 фондов

Таким образом, медиана равна 6,5. Это означает, что доходность одной половины фондов с очень высоким уровнем риска не превышает 6,5, а доходность второй половины - превышает ее. Обратите внимание на то, что медиана, равная 6,5, ненамного больше среднего значения, равного 6,08.

Если удалить из выборки доходность фонда RS Emerging Growth, то медиана оставшихся 14 фондов уменьшится до 6,2%, то есть не так значительно, как среднее арифметическое (рис. 3).

Рис. 3. Медиана 14 фондов

Мода

Термин был впервые введен Пирсоном в 1894 г. Мода - это число, которое чаще других встречается в выборке (наиболее модное). Мода хорошо описывает, например, типичную реакцию водителей на сигнал светофора о прекращении движения. Классический пример использования моды - выбор размера выпускаемой партии обуви или цвета обоев. Если распределение имеет несколько мод, то говорят, что оно мультимодально или многомодально (имеет два или более «пика»). Мультимодальность распределения дает важную информацию о природе исследуемой переменной. Например, в социологических опросах, если переменная представляет собой предпочтение или отношение к чему-то, то мультимодальность может означать, что существуют несколько определенно различных мнений. Мультимодальность также служит индикатором того, что выборка не является однородной и наблюдения, возможно, порождены двумя или более «наложенными» распределениями. В отличие от среднего арифметического, выбросы на моду не влияют. Для непрерывно распределенных случайных величин, например, для показателей среднегодовой доходности взаимных фондов, мода иногда вообще не существует (или не имеет смысла). Поскольку эти показатели могут принимать самые разные значения, повторяющиеся величины встречаются крайне редко.

Квартили

Квартили - это показатели, которые чаще всего используются для оценки распределения данных при описании свойств больших числовых выборок. В то время как медиана разделяет упорядоченный массив пополам (50% элементов массива меньше медианы и 50% - больше), квартили разбивают упорядоченный набор данных на четыре части. Величины Q 1 , медиана и Q 3 являются 25-м, 50-м и 75-м перцентилем соответственно. Первый квартиль Q 1 - это число, разделяющее выборку на две части: 25% элементов меньше, а 75% - больше первого квартиля.

Третий квартиль Q 3 - это число, разделяющее выборку также на две части: 75% элементов меньше, а 25% - больше третьего квартиля.

Для расчета квартилей в версиях Excel до 2007 г. использовалась функция =КВАРТИЛЬ(массив;часть). Начиная с версии Excel2010 применяются две функции:

  • =КВАРТИЛЬ.ВКЛ(массив;часть)
  • =КВАРТИЛЬ.ИСКЛ(массив;часть)

Эти две функции дают немного различные значения (рис. 4). Например, при вычислении квартилей выборки, содержащей данные о среднегодовой доходности 15 взаимных фондов с очень высоким уровнем риска Q 1 = 1,8 или –0,7 для КВАРТИЛЬ.ВКЛ и КВАРТИЛЬ.ИСКЛ, соответственно. Кстати функция КВАРТИЛЬ, использовавшаяся ранее соответствует современной функции КВАРТИЛЬ.ВКЛ. Для расчета квартилей в Excel с помощью вышеприведенных формул массив данных можно не упорядочивать.

Рис. 4. Вычисление квартилей в Excel

Подчеркнем еще раз. Excel умеет рассчитывать квартили для одномерного дискретного ряда , содержащего значения случайной величины. Расчет квартилей для распределения на основе частот приведен ниже в разделе .

Среднее геометрическое

В отличие от среднего арифметического среднее геометрическое позволяет оценить степень изменения переменной с течением времени. Среднее геометрическое - это корень n -й степени из произведения n величин (в Excel используется функция =СРГЕОМ):

G = (X 1 * X 2 * … * X n) 1/n

Похожий параметр – среднее геометрическое значение нормы прибыли – определяется формулой:

G = [(1 + R 1) * (1 + R 2) * … * (1 + R n)] 1/n – 1,

где R i – норма прибыли за i -й период времени.

Например, предположим, что объем вложенных средств в исходный момент времени равен 100 000 долл. К концу первого года он падает до уровня 50 000 долл., а к концу второго года восстанавливается до исходной отметки 100 000 долл. Норма прибыли этой инвестиции за двухлетний период равна 0, поскольку первоначальный и финальный объем средств равны между собой. Однако среднее арифметическое годовых норм прибыли равно = (–0,5 + 1) / 2 = 0,25 или 25%, поскольку норма прибыли в первый год R 1 = (50 000 – 100 000) / 100 000 = –0,5, а во второй R 2 = (100 000 – 50 000) / 50 000 = 1. В то же время, среднее геометрическое значение нормы прибыли за два года равно: G = [(1–0,5) * (1+1)] 1/2 – 1 = ½ – 1 = 1 – 1 = 0. Таким образом, среднее геометрическое точнее отражает изменение (точнее, отсутствие изменений) объема инвестиций за двухлетний период, чем среднее арифметическое.

Интересные факты. Во-первых, среднее геометрическое всегда будет меньше среднего арифметического тех же чисел. За исключением случая, когда все взятые числа равны друг другу. Во-вторых, рассмотрев свойства прямоугольного треугольника, можно понять, почему среднее называется геометрическим. Высота прямоугольного треугольника, опущенная на гипотенузу, есть среднее пропорциональное между проекциями катетов на гипотенузу, а каждый катет есть среднее пропорциональное между гипотенузой и его проекцией на гипотенузу (рис. 5). Это даёт геометрический способ построения среднего геометрического двух (длин) отрезков: нужно построить окружность на сумме этих двух отрезков как на диаметре, тогда высота, восставленная из точки их соединения до пересечения с окружностью, даст искомую величину:

Рис. 5. Геометрическая природа среднего геометрического (рисунок из Википедии)

Второе важное свойство числовых данных - их вариация , характеризующая степень дисперсии данных. Две разные выборки могут отличаться как средними значениями, так и вариациями. Однако, как показано на рис. 6 и 7, две выборки могут иметь одинаковые вариации, но разные средние значения, либо одинаковые средние значения и совершенно разные вариации. Данные, которым соответствует полигон В на рис. 7, изменяются намного меньше, чем данные, по которым построен полигон А.

Рис. 6. Два симметричных распределения колоколообразной формы с одинаковым разбросом и разными средними значениями

Рис. 7. Два симметричных распределения колоколообразной формы с одинаковыми средними значениями и разным разбросом

Существует пять оценок вариации данных:

  • размах,
  • межквартильный размах,
  • дисперсия,
  • стандартное отклонение,
  • коэффициент вариации.

Размах

Размахом называется разность между наибольшим и наименьшим элементами выборки:

Размах = Х Max – Х Min

Размах выборки, содержащей данные о среднегодовой доходности 15 взаимных фондов с очень высоким уровнем риска, можно вычислить, используя упорядоченный массив (см. рис. 4): Размах = 18,5 – (–6,1) = 24,6. Это значит, что разница между наибольшей и наименьшей среднегодовой доходностью фондов с очень высоким уровнем риска равна 24,6% .

Размах позволяет измерить общий разброс данных. Хотя размах выборки является весьма простой оценкой общего разброса данных, его слабость заключается в том, что он никак не учитывает, как именно распределены данные между минимальным и максимальным элементами. Этот эффект хорошо прослеживается на рис. 8, который иллюстрирует выборки, имеющие одинаковый размах. Шкала В демонстрирует, что если выборка содержит хотя бы одно экстремальное значение, размах выборки оказывается весьма неточной оценкой разброса данных.

Рис. 8. Сравнение трех выборок, имеющих одинаковый размах; треугольник символизирует опору весов, и его расположение соответствует среднему значению выборки

Межквартильный размах

Межквартильный, или средний, размах - это разность между третьим и первым квартилями выборки:

Межквартильный размах = Q 3 – Q 1

Эта величина позволяет оценить разброс 50% элементов и не учитывать влияние экстремальных элементов. Межквартильный размах выборки, содержащей данные о среднегодовой доходности 15 взаимных фондов с очень высоким уровнем риска, можно вычислить, используя данные на рис. 4 (например, для функции КВАРТИЛЬ.ИСКЛ): Межквартильный размах = 9,8 – (–0,7) = 10,5. Интервал, ограниченный числами 9,8 и –0,7, часто называют средней половиной.

Следует отметить, что величины Q 1 и Q 3 , а значит, и межквартильный размах, не зависят от наличия выбросов, поскольку при их вычислении не учитывается ни одна величина, которая была бы меньше Q 1 или больше Q 3 . Суммарные количественные характеристики, такие как медиана, первый и третий квартили, а также межквартильный размах, на которые не влияют выбросы, называются устойчивыми показателями.

Хотя размах и межквартильный размах позволяют оценить общий и средний разброс выборки соответственно, ни одна из этих оценок не учитывает, как именно распределены данные. Дисперсия и стандартное отклонение лишены этого недостатка. Эти показатели позволяют оценить степень колебания данных вокруг среднего значения. Выборочная дисперсия является приближением среднего арифметического, вычисленного на основе квадратов разностей между каждым элементом выборки и выборочным средним. Для выборки Х 1 , Х 2 , … Х n выборочная дисперсия (обозначаемая символом S 2 задается следующей формулой:

В общем случае выборочная дисперсия - это сумма квадратов разностей между элементами выборки и выборочным средним, деленная на величину, равную объему выборки минус один:

где - арифметическое среднее, n - объем выборки, X i - i -й элемент выборки X . В Excel до версии 2007 для расчета выборочной дисперсии использовалась функция =ДИСП(), с версии 2010 используется функция =ДИСП.В().

Наиболее практичной и широко распространенной оценкой разброса данных является стандартное выборочное отклонение . Этот показатель обозначается символом S и равен квадратному корню из выборочной дисперсии:

В Excel до версии 2007 для расчета стандартного выборочного отклонения использовалась функция =СТАНДОТКЛОН(), с версии 2010 используется функция =СТАНДОТКЛОН.В(). Для расчета этих функций массив данных может быть неупорядоченным.

Ни выборочная дисперсия, ни стандартное выборочное отклонение не могут быть отрицательными. Единственная ситуация, в которой показатели S 2 и S могут быть нулевыми, - если все элементы выборки равны между собой. В этом совершенно невероятном случае размах и межквартильный размах также равны нулю.

Числовые данные по своей природе изменчивы. Любая переменная может принимать множество разных значений. Например, разные взаимные фонды имеют разные показатели доходности и убытков. Вследствие изменчивости числовых данных очень важно изучать не только оценки среднего значения, которые по своей природе являются суммарными, но и оценки дисперсии, характеризующие разброс данных.

Дисперсия и стандартное отклонение позволяют оценить разброс данных вокруг среднего значения, иначе говоря, определить, сколько элементов выборки меньше среднего, а сколько - больше. Дисперсия обладает некоторыми ценными математическими свойствами. Однако ее величина представляет собой квадрат единицы измерения - квадратный процент, квадратный доллар, квадратный дюйм и т.п. Следовательно, естественной оценкой дисперсии является стандартное отклонение, которое выражается в обычных единицах измерений - процентах дохода, долларах или дюймах.

Стандартное отклонение позволяет оценить величину колебаний элементов выборки вокруг среднего значения. Практически во всех ситуациях основное количество наблюдаемых величин лежит в интервале плюс-минус одно стандартное отклонение от среднего значения. Следовательно, зная среднее арифметическое элементов выборки и стандартное выборочное отклонение, можно определить интервал, которому принадлежит основная масса данных.

Стандартное отклонение доходности 15 взаимных фондов с очень высоким уровнем риска равно 6,6 (рис. 9). Это значит, что доходность основной массы фондов отличается от среднего значения не более чем на 6,6% (т.е. колеблется в интервале от – S = 6,2 – 6,6 = –0,4 до + S = 12,8). Фактически в этом интервале лежит пятилетняя среднегодовая доходность 53,3% (8 из 15) фондов.

Рис. 9. Стандартное выборочное отклонение

Обратите внимание на то, что в процессе суммирования квадратов разностей элементы выборки, лежащие дальше от среднего значения, приобретают больший вес, чем элементы, лежащие ближе. Это свойство является основной причиной того, что для оценки среднего значения распределения чаще всего используется среднее арифметическое значение.

Коэффициент вариации

В отличие от предыдущих оценок разброса, коэффициент вариации является относительной оценкой. Он всегда измеряется в процентах, а не в единицах измерения исходных данных. Коэффициент вариации, обозначаемый символами CV, измеряет рассеивание данных относительно среднего значения. Коэффициент вариации равен стандартному отклонению, деленному на среднее арифметическое и умноженному на 100%:

где S - стандартное выборочное отклонение, - выборочное среднее.

Коэффициент вариации позволяет сравнить две выборки, элементы которых выражаются в разных единицах измерения. Например, управляющий службы доставки корреспонденции намеревается обновить парк грузовиков. При погрузке пакетов следует учитывать два вида ограничений: вес (в фунтах) и объем (в кубических футах) каждого пакета. Предположим, что в выборке, содержащей 200 пакетов, средний вес равен 26,0 фунтов, стандартное отклонение веса 3,9 фунтов, средний объем пакета 8,8 кубических футов, а стандартное отклонение объема 2,2 кубических фута. Как сравнить разброс веса и объема пакетов?

Поскольку единицы измерения веса и объема отличаются друг от друга, управляющий должен сравнить относительный разброс этих величин. Коэффициент вариации веса равен CV W = 3,9 / 26,0 * 100% = 15%, а коэффициент вариации объема CV V = 2,2 / 8,8 * 100% = 25% . Таким образом, относительный разброс объема пакетов намного больше относительного разброса их веса.

Форма распределения

Третье важное свойство выборки - форма ее распределения. Это распределение может быть симметричным или асимметричным. Чтобы описать форму распределения, необходимо вычислить его среднее значение и медиану. Если эти два показателя совпадают, переменная считается симметрично распределенной. Если среднее значение переменной больше медианы, ее распределение имеет положительную асимметрию (рис. 10). Если медиана больше среднего значения, распределение переменной имеет отрицательную асимметрию. Положительная асимметрия возникает, когда среднее значение увеличивается до необычайно высоких значений. Отрицательная асимметрия возникает, когда среднее значение уменьшается до необычайно малых значений. Переменная является симметрично распределенной, если она не принимает никаких экстремальных значений ни в одном из направлений, так что большие и малые значения переменной уравновешивают друг друга.

Рис. 10. Три вида распределений

Данные, изображенные на шкале А, имеют отрицательную асимметрию. На этом рисунке виден длинный хвост и перекос влево, вызванные наличием необычно малых значений. Эти крайне малые величины смещают среднее значение влево, и оно становится меньше медианы. Данные, изображенные на шкале Б, распределены симметрично. Левая и правая половины распределения являются своими зеркальными отражениями. Большие и малые величины уравновешивают друг друга, а среднее значение и медиана равны между собой. Данные, изображенные на шкале В, имеют положительную асимметрию. На этом рисунке виден длинный хвост и перекос вправо, вызванные наличием необычайно высоких значений. Эти слишком большие величины смещают среднее значение вправо, и оно становится больше медианы.

В Excel описательные статистики можно получить с помощью надстройки Пакет анализа . Пройдите по меню Данные Анализ данных , в открывшемся окне выберите строку Описательная статистика и кликните Ok . В окне Описательная статистика обязательно укажите Входной интервал (рис. 11). Если вы хотите увидеть описательные статистики на том же листе, что и исходные данные, выберите переключатель Выходной интервал и укажите ячейку, куда следует поместить левый верхний угол выводимых статистик (в нашем примере $C$1). Если вы хотите вывести данные на новый лист или в новую книгу, достаточно просто выбрать соответствующий переключатель. Поставьте галочку напротив Итоговая статистика . По желанию также можно выбрать Уровень сложности, k-й наименьший и k-й наибольший .

Если на вкладе Данные в области Анализ у вас не отображается пиктограмма Анализ данных , нужно предварительно установить надстройку Пакет анализа (см., например, ).

Рис. 11. Описательные статистики пятилетней среднегодовой доходности фондов с очень высоким уровнями риска, вычисленные с помощью надстройки Анализ данных программы Excel

Excel вычисляет целый ряд статистик, рассмотренных выше: среднее, медиану, моду, стандартное отклонение, дисперсию, размах (интервал ), минимум, максимум и объем выборки (счет ). Кроме того, Excel вычисляет некоторые новые для нас статистики: стандартную ошибку, эксцесс и асимметричность. Стандартная ошибка равна стандартному отклонению, деленному на квадратный корень объема выборки. Асимметричность характеризует отклонение от симметричности распределения и является функцией, зависящей от куба разностей между элементами выборки и средним значением. Эксцесс представляет собой меру относительной концентрации данных вокруг среднего значения по сравнению с хвостами распределения и зависит от разностей между элементами выборки и средним значением, возведенных в четвертую степень.

Вычисление описательных статистик для генеральной совокупности

Среднее значение, разброс и форма распределения, рассмотренные выше, представляют собой характеристики, определяемые по выборке. Однако, если набор данных содержит числовые измерения всей генеральной совокупности, можно вычислить ее параметры. К числу таких параметров относятся математическое ожидание, дисперсия и стандартное отклонение генеральной совокупности.

Математическое ожидание равно сумме всех значений генеральной совокупности, деленной на объем генеральной совокупности:

где µ - математическое ожидание, X i - i -е наблюдение переменной X , N - объем генеральной совокупности. В Excel для вычисления математического ожидания используется та же функция, что и для среднего арифметического: =СРЗНАЧ().

Дисперсия генеральной совокупности равна сумме квадратов разностей между элементами генеральной совокупности и мат. ожиданием, деленной на объем генеральной совокупности:

где σ 2 – дисперсия генеральной совокупности. В Excel до версии 2007 для вычисления дисперсии генеральной совокупности используется функция =ДИСПР(), начиная с версии 2010 =ДИСП.Г().

Стандартное отклонение генеральной совокупности равно квадратному корню, извлеченному из дисперсии генеральной совокупности:

В Excel до версии 2007 для вычисления стандартного отклонения генеральной совокупности используется функция =СТАНДОТКЛОНП(), начиная с версии 2010 =СТАНДОТКЛОН.Г(). Обратите внимание на то, что формулы для дисперсии и стандартного отклонения генеральной совокупности отличаются от формул для вычисления выборочной дисперсии и стандартного отклонения. При вычислении выборочных статистик S 2 и S знаменатель дроби равен n – 1 , а при вычислении параметров σ 2 и σ - объему генеральной совокупности N .

Эмпирическое правило

В большинстве ситуаций крупная доля наблюдений концентрируется вокруг медианы, образуя кластер. В наборах данных, имеющих положительную асимметрию, этот кластер расположен левее (т.е. ниже) математического ожидания, а в наборах, имеющих отрицательную асимметрию, этот кластер расположен правее (т.е. выше) математического ожидания. У симметричных данных математическое ожидание и медиана совпадают, а наблюдения концентрируются вокруг математического ожидания, формируя колоколообразное распределение. Если распределение не имеет ярко выраженной асимметрии, а данные концентрируются вокруг некоего центра тяжести, для оценки изменчивости можно применять эмпирическое правило, которое гласит: если данные имеют колоколообразное распределение, то приблизительно 68% наблюдений отстоят от математического ожидания не более чем на одно стандартное отклонение, приблизительно 95% наблюдений отстоят от математического ожидания не более чем на два стандартных отклонения и 99,7% наблюдений отстоят от математического ожидания не более чем на три стандартных отклонения.

Таким образом, стандартное отклонение, представляющее собой оценку среднего колебания вокруг математического ожидания, помогает понять, как распределены наблюдения, и идентифицировать выбросы. Из эмпирического правила следует, что для колоколообразных распределений лишь одно значение из двадцати отличается от математического ожидания больше, чем на два стандартных отклонения. Следовательно, значения, лежащие за пределами интервала µ ± 2σ , можно считать выбросами. Кроме того, только три из 1000 наблюдений отличаются от математического ожидания больше чем на три стандартных отклонения. Таким образом, значения, лежащие за пределами интервала µ ± 3σ практически всегда являются выбросами. Для распределений, имеющих сильную асимметрию или не имеющих колоколообразной формы, можно применять эмпирическое правило Бьенамэ-Чебышева.

Более ста лет назад математики Бьенамэ и Чебышев независимо друг от друга открыли полезное свойство стандартного отклонения. Они обнаружили, что для любого набора данных, независимо от формы распределения, процент наблюдений, лежащих на расстоянии не превышающем k стандартных отклонений от математического ожидания, не меньше (1 – 1/ k 2)*100% .

Например, если k = 2, правило Бьенамэ-Чебышева гласит, что как минимум (1 – (1/2) 2) х 100% = 75% наблюдений должно лежать в интервале µ ± 2σ . Это правило справедливо для любого k , превышающего единицу. Правило Бьенамэ-Чебышева носит весьма общий характер и справедливо для распределений любого вида. Оно указывает минимальное количество наблюдений, расстояние от которых до математического ожидания не превышает заданной величины. Однако, если распределение имеет колоколообразную форму, эмпирическое правило более точно оценивает концентрацию данных вокруг математического ожидания.

Вычисление описательных статистик для распределения на основе частот

Если исходные данные недоступны, единственным источником информации становится распределение частот. В таких ситуациях можно вычислить приближенные значения количественных показателей распределения, таких как среднее арифметическое, стандартное отклонение, квартили.

Если выборочные данные представлены в виде распределения частот, приближенное значение среднего арифметического можно вычислить, предполагая, что все значения внутри каждого класса сосредоточены в средней точке класса:

где - выборочное среднее, n - количество наблюдений, или объем выборки, с - количество классов в распределении частот, m j - средняя точка j -гo класса, f j - частота, соответствующая j -му классу.

Для вычисления стандартного отклонения по распределению частот также предполагается, что все значения внутри каждого класса сосредоточены в средней точке класса.

Чтобы понять, как определяются квартили ряда на основе частот, рассмотрим расчет нижнего квартиля на основе данных за 2013 г. о распределении населения России по величине среднедушевых денежных доходов (рис. 12).

Рис. 12. Доля населения России со среднедушевыми денежными доходами в среднем за месяц, рублей

Для расчета первого квартиля интервального вариационного ряда можно воспользоваться формулой:

где Q1 – величина первого квартиля, хQ1 – нижняя граница интервала, содержащего первый квартиль (интервал определяется по накопленной частоте, первой превышающей 25%); i – величина интервала; Σf – сумма частот всей выборки; наверное, всегда равна 100%; SQ1–1 – накопленная частота интервала, предшествующего интервалу, содержащему нижний квартиль; fQ1 – частота интервала, содержащего нижний квартиль. Формула для третьего квартиля отличается тем, что во всех местах вместо Q1 нужно использовать Q3, а вместо ¼ подставить ¾.

В нашем примере (рис. 12) нижний квартиль находится в интервале 7000,1 – 10 000, накопленная частота которого равна 26,4%. Нижняя граница этого интервала – 7000 руб., величина интервала – 3000 руб., накопленная частота интервала, предшествующего интервалу, содержащему нижний квартиль – 13,4%, частота интервала, содержащего нижний квартиль – 13,0%. Таким образом: Q1 = 7000 + 3000 * (¼ * 100 – 13,4) / 13 = 9677 руб.

Ловушки, связанные с описательными статистиками

В этой заметке мы рассмотрели, как описать набор данных с помощью различных статистик, оценивающих его среднее значение, разброс и вид распределения. Следующим этапом является анализ и интерпретация данных. До сих пор мы изучали объективные свойства данных, а теперь переходим к их субъективной трактовке. Исследователя подстерегают две ошибки: неверно выбранный предмет анализа и неправильная интерпретация результатов.

Анализ доходности 15 взаимных фондов с очень высоким уровнем риска является вполне беспристрастным. Он привел к совершенно объективным выводам: все взаимные фонды имеют разную доходность, разброс доходности фондов колеблется от –6,1 до 18,5, а средняя доходность равна 6,08. Объективность анализа данных обеспечивается правильным выбором суммарных количественных показателей распределения. Было рассмотрено несколько способов оценки среднего значения и разброса данных, указаны их преимущества и недостатки. Как же выбрать правильную статистику, обеспечивающую объективный и беспристрастный анализ? Если распределение данных имеет небольшую асимметрию, следует ли выбирать медиану, а не среднее арифметическое? Какой показатель более точно характеризует разброс данных: стандартное отклонение или размах? Следует ли указывать на положительную асимметрию распределения?

С другой стороны, интерпретация данных является субъективным процессом. Разные люди приходят к разным выводам, истолковывая одни и те же результаты. У каждого своя точка зрения. Кто-то считает суммарные показатели среднегодовой доходности 15 фондов с очень высоким уровнем риска хорошими и вполне доволен полученным доходом. Другим может показаться, что эти фонды имеют слишком низкую доходность. Таким образом, субъективность следует компенсировать честностью, нейтральностью и ясностью выводов.

Этические проблемы

Анализ данных неразрывно связан с этическими вопросами. Следует критически относиться к информации, распространяемой газетами, радио, телевидением и Интерентом. Со временем вы научитесь скептически относиться не только к результатам, но и к целям, предмету и объективности исследований. Лучше всего об этом сказал известный британский политик Бенджамин Дизраэли: «Существуют три вида лжи: ложь, наглая ложь и статистика».

Как было отмечено в заметке этические проблемы возникают при выборе результатов, которые следует привести в отчете. Следует публиковать как положительные, так и отрицательные результаты. Кроме того, делая доклад или письменный отчет, результаты необходимо излагать честно, нейтрально и объективно. Следует различать неудачную и нечестную презентации. Для этого необходимо определить, каковы были намерения докладчика. Иногда важную информацию докладчик пропускает по невежеству, а иногда - умышленно (например, если он применяет среднее арифметическое для оценки среднего значения явно асимметричных данных, чтобы получить желаемый результат). Нечестно также замалчивать результаты, которые не соответствуют точке зрения исследователя.

Используются материалы книги Левин и др. Статистика для менеджеров. – М.: Вильямс, 2004. – с. 178–209

Функция КВАРТИЛЬ оставлена для совмещения с более ранними версиями Excel

Что такое среднее арифметическое

Средним арифметическим нескольких величин является отношение суммы этих величин к их количеству.

Среднее арифметическое определенного ряда чисел называется сумма всех этих чисел, поделенная на количество слагаемых. Таким образом, среднее арифметическое является средним значением числового ряда.

Чему равно среднее арифметическое нескольких чисел? А равно они сумме этих чисел, которая поделена на количество слагаемых в этой сумме.

Как найти среднее арифметическое число

В вычислении или нахождении среднего арифметического нескольких чисел, нет ничего сложного, достаточно сложить все представленные числа, а полученную сумму разделить на количество слагаемых. Полученный результат и будет средним арифметическим этих чисел.


Рассмотрим этот процесс более подробно. Что же нам нужно сделать для вычисления среднего арифметического и получения конечного результата этого числа.

Во-первых, для его вычисления нужно определить набор чисел или их количество. В этот набор могут входить большие и маленькие числа, и их количество может быть каким угодно.

Во-вторых, все эти числа нужно сложить и получить их сумму. Естественно, если числа несложные и их небольшое количество, то вычисления можно произвести, записав от руки. А если же набор чисел впечатляющий, то лучше воспользоваться калькулятором или электронной таблицей.

И, в-четвертых, полученную от сложения сумму необходимо разделить на количество чисел. В итоге мы получим результат, который и будет средним арифметическим числом этого ряда.



Для чего нужно среднее арифметическое

Среднее арифметическое может пригодиться не только для решения примеров и задач на уроках математики, но для других целей, необходимых в повседневной жизни человека. Такими целями может служить подсчет среднего арифметического для расчета среднего расхода финансов в месяц, или для подсчета времени, которое вы тратите на дорогу, также для того чтобы узнать посещаемость, производительность, скорость движения, урожайность и много другого.

Так, например, давайте попробуем рассчитать, сколько времени вы тратите на дорогу в школу. Идя в школу или возвращаясь, домой вы каждый раз тратите на дорогу разное время, так как когда вы спешите, то вы идете быстрее, и поэтому дорога занимает меньше времени. А вот, возвращаясь, домой вы можете идти не спеша, общаясь с одноклассниками, любуясь природой и поэтому времени на дорогу займет больше.

Поэтому, точно определить время, затраченное на дорогу у вас не получиться, но благодаря среднему арифметическому вы сможете приблизительно узнать время, которое вы тратите на дорогу.

Припустим, что в первый день после выходных, вы потратили на путь от дома до школу пятнадцать минут, на второй день ваш путь занял двадцать минут, в среду вы прошли расстояние за двадцать пять минут, за такое же время составил ваш путь и в четверг, а в пятницу вы никуда не торопились и возвращались целых пол часа.

Давайте найдем среднее арифметическое, прибавив время, за все пять дней. Итак,

15 + 20 + 25 + 25 + 30 = 115

Теперь разделим эту сумму на количество дней

Благодаря такому способу вы узнали, что путь от дома до школы вы приблизительно тратите двадцать три минуты своего времени.

Домашнее задание

1.Путем нехитрых вычислений найдите среднее арифметическое число посещаемости учеников вашего класса за неделю.

2. Найдите среднее арифметическое:



3. Решите задачу:



Тема среднего арифметического и среднего геометрического входит в программу математики 6-7 классов. Так как параграф довольно прост для понимания, его быстро проходят, и к завершению учебного года школьники его забывают. Но знания в базовой статистике нужны для сдачи ЕГЭ, а также для международных экзаменов SAT. Да и для повседневной жизни развитое аналитическое мышление никогда не помешает.

Как вычислить среднее арифметическое и среднее геометрическое чисел

Допустим, имеется ряд чисел: 11, 4, и 3. Средним арифметическим называется сумма всех чисел, поделенная на количество данных чисел. То есть в случае чисел 11, 4, 3, ответ будет 6. Как образом получается 6?

Решение: (11 + 4 + 3) / 3 = 6

В знаменателе должно стоять число, равное количеству чисел, среднее которых нужно найти. Сумма делится на 3, так как слагаемых три.

Теперь надо разобраться со средним геометрическим. Допустим, есть ряд чисел: 4, 2 и 8.

Средним геометрическим чисел называется произведение всех данных чисел, находящееся под корнем со степенью, равной количеству данных чисел.То есть в случае чисел 4, 2 и 8 ответом будет 4. Вот каким образом это получилось:

Решение: ∛(4 × 2 × 8) = 4

В обоих вариантах получились целые ответы, так как для примера были взяты специальные числа. Так происходит отнюдь не всегда. В большинстве случаев ответ приходится округлять или оставлять под корнем. Например, для чисел 11, 7 и 20 среднее арифметическое ≈ 12,67, а среднее геометрическое - ∛1540. А для чисел 6 и 5 ответы, соответственно, будут 5,5 и √30.

Может ли так произойти, что среднее арифметическое станет равным среднему геометрическому?

Конечно, может. Но только в двух случаях. Если имеется ряд чисел, состоящий только либо из единиц, либо из нулей. Примечательно также то, что ответ не зависит от их количества.

Доказательство с единицами: (1 + 1 + 1) / 3 = 3 / 3 = 1 (среднее арифметическое).

∛(1 × 1 × 1) = ∛1 = 1(среднее геометрическое).

Доказательство с нулями: (0 + 0) / 2=0 (среднее арифметическое).

√(0 × 0) = 0 (среднее геометрическое).

Другого варианта нет и быть не может.

Средняя величина является наиболее ценной с аналитической точ­ки зрения и универсальной формой выражения статистических пока­зателей. Наиболее распространенная средняя - средняя арифметичес­кая - обладает рядом математических свойств, которые могут быть использованы при ее расчете. В то же время при исчислении конкрет­ной средней всегда целесообразно опираться на ее логическую фор­мулу, представляющую собой отношение объема признака к объему совокупности. Для каждой средней существует только одно истинное исходное соотношение, для реализации которого, в зависимости от имеющихся данных, могут потребоваться различные формы средних. Однако во всех случаях, когда характер осредняемой величины под­разумевает наличие весов, нельзя вместо взвешенных формул сред­них использовать их невзвешенные формулы.

Средняя величина - это наиболее характерное для совокупности значение признака и распределенный равными долями между единицами совокупности раз­мер признака совокупности.

Признак, для которого рассчитывается средняя величи­на, носит название осредняемый .

Средняя величина - показатель, рассчитываемый сопоставлением абсолютных или относительных величин. Среднюю величину обозначают

Средняя величина отражает влияние всех факторов, влия­ющих на исследуемое явление, и является для них равнодей­ствующей. Другими словами, погашая индивидуальные откло­нения и устраняя влияние случаев, средняя величина, отражая общую меру результатов этого действия, выступает общей закономерностью изучаемого явления.

Условия применения средних величин:

Ø однородность исследуемой совокупности. Если некоторые подверженные влиянию случайного фактора элементы совокупности имеют значитель­но отличающиеся от остальных величины изуча­емого признака, то данные элементы повлияют на размер средней для данной совокупности. В этом случае средняя не будет выражать наиболее ти­пичную для совокупности величину признака. Если исследуемое явление неоднородно, требуется его разбивка на содержащие однородные элементы группы. В данном случае рассчитывают средние по группам - груп­повые средние, выражающие наиболее характерную вели­чину явления в каждой группе, а затем рассчитывается об­щая средняя величина для всех элементов, характеризующая явление в целом. Она рассчитывается как средняя из группо­вых средних, взвешенных по числу включенных в каждую группу элементов совокупности;

Ø достаточное количество единиц в совокупности;

Ø максимальное и минимальное значения признака в изучаемой совокупности.

Средняя величина (показатель) – это обобщенная количественная характеристика признака в систематической совокупности в конкретных условиях места и времени .

В статистике применяется следующие формы (виды) средних величин, называемых степенными и структурными:

Ø средняя арифметическая (простая и взвешенная);

простая

В целях анализа и получения статистических выводов по результатом сводки и группировки исчисляют обобщающие показатели – средние и относительные величины.

Задача средних величин – охарактеризовать все единицы статистической совокупности одним значением признака.

Средними величинами характеризуются качественные показатели предпринимательской деятельности: издержки обращения, прибыль, рентабельность и др.

Средняя величина – это обобщающая характеристика единиц совокупности по какому–либо варьирующему признаку.

Средние величины позволяют сравнивать уровни одного и того же признака в различных совокупностях и находить причины этих расхождений.

В анализе изучаемых явлений роль средних величин огромна. Английский экономист В. Петти (1623-1687 гг.) широко использовал средние величины. В. Петти хотел использовать средние величины в качестве меры стоимости расходов на среднее дневное пропитание одного работника. Устойчивость средней величины – это отражение закономерности изучаемых процессов. Он считал что информацию можно преобразовать, даже если нет достаточного объема исходных данных.

Применял средние и относительные величины английский ученый Г. Кинг (1648-1712) при анализе данных о населении Англии.

Теоретические разработки бельгийского статистика А. Кетле (1796-1874 гг.) основаны на противоречивости природы социальных явлений – высокоустойчивых в массе, но сугубо индивидуальных.

Согласно А. Кетле постоянные причины действуют одинаково на каждое изучаемое явление и делают эти явления похожими друг на друга, создают общие для всех них закономерности.

Следствием учения А. Кетле явилось выделение средних величин в качестве основного приема статистического анализа. Он говорил, что статистические средние величины представляют собой не категорию объективной действительности.

А. Кетле выразил взгляды на среднюю величину в своей теории среднего человека. Средний человек – это человек, обладающий всеми качествами в среднем размере (средняя смертность или рождаемость, средний рост и вес, средняя быстрота бега, средняя наклонность к браку и самоубийству, к добрым делам и т. д.). Для А. Кетле средний человек – это идеал человека. Несостоятельность теории среднего человека А. Кетле была доказана в русской статистической литературе в конце XIX-XX вв.

Известный русский статистик Ю. Э. Янсон (1835-1893 гг.) писал, что А. Кетле предполагает существование в природе типа среднего человека как чего–то данного, от которого жизнь отклонила средних людей данного общества и данного времени, а это приводит его к совершенно механическому взгляду и на законы движения социальной жизни: движение – это постепенное возрастание средних свойств человека, постепенное восстановление типа; следовательно, такое нивелирование всех проявлений жизни социального тела, за которым всякое поступательное движение прекращается.

Сущность данной теории нашла свое дальнейшее развитие в работах ряда теоретиков статистики как теория истинных величин. У А. Кетле были последователи – немецкий экономист и статистик В. Лексис (1837-1914 гг.), перенесший теорию истинных величин на экономические явления общественной жизни. Его теория известна под названием теория устойчивости. Другая разновидность идеалистической теории средних величин основана на философии

Ее основатель – английский статистик А. Боули (1869– 1957гг.) – один из самых видных теоретиков новейшего времени в области теории средних величин. Его концепция средних величин изложена в книге «Элементы статистики».

А. Боули рассматривает средние величины лишь с количественной стороны, тем самым отрывает количество от качества. Определяя значение средних величин (или «их функцию»), А. Боули выдвигает махистский принцип мышления. А. Боули писал, что функция средних величин должна выражать сложную группу

с помощью немногих простых чисел. Статистические данные должны быть упрощены, сгруппированы и приведены к средним Эти взгляды: разделяли Р. Фишер (1890-1968 гг.), Дж. Юл (1871 – 1951 гг.), Фредерик С. Миллс (1892 г) и др.

В 30-е гг. XX в. и последующие годы средняя величина рассматривается как социально значимая характеристика, информативность которой зависит от однородности данных.

Виднейшие представители итальянской школы Р. Бенини (1862-1956 гг.) и К. Джини (1884-1965 гг.), считая статистику отраслью логики, расширили область применения статистической индукции, но познавательные принципы логики и статистики они связывали с природой изучаемых явлений, следуя традициям социологической трактовки статистики.

В работах К. Маркса и В. И. Ленина средним величинам отводится особая роль.

К. Маркс утверждал, что в средней величине погашаются индивидуальные отклонения от общего уровня и средний уровень становится обобщающей характеристикой массового явления Такой характеристикой массового явления средняя величина становится лишь при условии, если взято значительное число единиц и эти единицы качественно однородны. Маркс писал, чтобы находимая средняя величина была средней «…многих различных индивидуальных величин одного и того же вида».

Средняя величина приобретает особую значимость в условиях рыночной экономики. Она помогает определить необходимое и общее, тенденцию закономерности экономического развития непосредственно через единичное и случайное.

Средние величины являются обобщающими показателями, в которых находят выражение действие общих условий, закономерность изучаемого явления.

Статистические средние величины рассчитываются на основе массовых данных статистически правильно организованного массового наблюдения. Если статистическая средняя рассчитывается по массовым данным для качественно однородной совокупности (массовых явлений), то она будет объективной.

Средняя величина абстрактна, так как характеризует значение абстрактной единицы.

От разнообразия признака у отдельных объектов абстрагируется средняя. Абстракция – ступень научного исследования. В средней величине осуществляется диалектическое единство отдельного и общего.

Средние величины должны применяться исходя из диалектического понимания категорий индивидуального и общего, единичного и массового.

Средняя отображает что–то общее, которое складывается в определенном единичном объекте.

Для выявления закономерностей в массовых общественных процессах средняя величина имеет большое значение.

Отклонение индивидуального от общего – проявление процесса развития.

В средней величине отражается характерный, типичный, реальный уровень изучаемых явлений. Задачей средних величин является характеристика этих уровней и их изменений во времени и пространстве.

Средний показатель – это обычное значение, потому что формируется в нормальных, естественных, общих условиях существования конкретного массового явления, рассматриваемого в целом.

Объективное свойство статистического процесса или явления отражает средняя величина.

Индивидуальные значения исследуемого статистического признака у каждой единицы совокупности различны. Средняя величина индивидуальных значений одного вида – продукт необходимости, который является результатом совокупного действия всех единиц совокупности, проявляющийся в массе повторяющихся случайностей.

Одни индивидуальные явления имеют признаки, которые существуют во всех явлениях, но в разных количествах – это рост или возраст человека. Другие признаки индивидуального явления, качественно различные в различных явлениях, т. е. имеются у одних и не наблюдаются у других (мужчина не станет женщиной). Средняя величина вычисляется для признаков качественно однородных и различных только количественно, которые присущи всем явлениям в данной совокупности.

Средняя величина является отражением значений изучаемого признака и измеряется в той же размерности, что и этот признак.

Теория диалектического материализма учит, что все в мире меняется, развивается. А также изменяются признаки, которые характеризуются средними величинами, а соответственно – и сами средние.

В жизни происходит непрерывный процесс создания чего–то нового. Носителем нового качества являются единичные объекты, далее количество этих объектов возрастает, и новое становится массовым, типичным.

Средняя величина характеризует изучаемую совокупность только по одному признаку. Для полного и всестороннего представления изучаемой совокупности по ряду определенных признаков необходимо располагать системой средних величин, которые могут описать явление с разных сторон.

2. Виды средних величин

В статистической обработке материала возникают различные задачи, которые необходимо решать, и поэтому в статистической практике используются различные средние величины. Математическая статистика использует различные средние, такие как: средняя арифметическая; средняя геометрическая; средняя гармоническая; средняя квадратическая.

Для того чтобы применить одну из вышеперечисленных видов средней, необходимо проанализировать изучаемую совокупность, определить материальное содержание изучаемого явления, все это делается на основе выводов, полученных из принципа осмысленности результатов при взвешивании или суммировании.

В изучении средних величин применяются следующие показатели и обозначения.

Признак, по которому находится средняя, называется осредняемым признаком и обозначается х; величина осредняемого признака у любой единицы статистической совокупности называют индивидуальным его значением, или вариантами, и обозначают как x 1 , х 2 , x 3 ,… х п ; частота – это повторяемость индивидуальных значений признака, обозначается буквой f.

Средняя арифметическая

Один из наиболее распространенных видов средней – средняя арифметическая, которая исчисляется тогда, когда объем ос–редняемого признака образуется как сумма его значений у отдельных единиц изучаемой статистической совокупности.

Для вычисления средней арифметической величины сумму всех уровней признака делят на их число.


Если некоторые варианты встречаются несколько раз, то сумму уровней признака можно получить умножением каждого уровня на соответствующее число единиц совокупности с последующим сложением полученных произведений, исчисленная таким образом средняя арифметическая называется средней арифметической взвешенной.

Формула средней арифметической взвешенной выглядит следующим образом:


гдех i – варианты,

f i – частоты или веса.

Взвешенная средняя величина должна употребляться во всех случаях, когда варианты имеют различную численность.

Арифметическая средняя как бы распределяет поровну между отдельными объектами общую величину признака, в действительности варьирующуюся у каждого из них.

Вычисление средних величин производят по данным, сгруппированным в виде интервальных рядов распределения, когда варианты признака, из которых исчисляется средняя, представлены в виде интервалов (от – до).

Свойства средней арифметической:

1) средняя арифметическая суммы варьирующих величин равна сумме средних арифметических величин: Если х i = y i +z i , то


Данное свойство показывает в каких случаях можно суммировать средние величины.

2) алгебраическая сумма отклонений индивидуальных значений варьирующего признака от средней равна нулю, так как сумма отклонений в одну сторону погашается суммой отклонений в другую сторону:


Это правило демонстрирует, что средняя является равнодействующей.

3) если все варианты ряда увеличить или уменьшить на одно и тоже число?, то средняя увеличится или уменьшится на это же число?:


4) если все варианты ряда увеличить или уменьшить в А раз, то средняя также увеличится или уменьшится в А раз:


5) пятое свойство средней показывает нам, что она не зависит от размеров весов, но зависит от соотношения между ними. В качестве весов могут быть взяты не только относительные, но и абсолютные величины.

Если все частоты ряда разделить или умножить на одно и тоже число d, то средняя не изменится.


Средняя гармоническая. Для того чтобы определить среднюю арифметическую, необходимо иметь ряд вариантов и частот, т. е. значения х и f.

Допустим, известны индивидуальные значения признака х и произведения х/, а частоты f неизвестны, тогда, чтобы рассчитать среднюю, обозначим произведение = х/; откуда:



Средняя в этой форме называется средней гармонической взвешенной и обозначается х гарм. взв.

Соответственно, средняя гармоническая тождественна средней арифметической. Она применима, когда неизвестны действительные веса f , а известно произведение = z

Когда произведения одинаковы или равны единицы (m = 1) применяется средняя гармоническая простая, вычисляемая по формуле:


где х – отдельные варианты;

n – число.

Средняя геометрическая

Если имеется n коэффициентов роста, то формула среднего коэффициента:


Это формула средней геометрической.

Средняя геометрическая равна корню степени n из произведения коэффициентов роста, характеризующих отношение величины каждого последующего периода к величине предыдущего.

Если осреднению подлежат величины, выраженные в виде квадратных функций, применяется средняя квадратическая. Например, с помощью средней квадратической можно определить диаметры труб, колес и т. д.

Средняя квадратическая простая определяется путем извлечения квадратного корня из частного от деления суммы квадратов отдельных значений признака на их число.


Средняя квадратическая взвешенная равна:

3. Структурные средние величины. Мода и медиана

Для характеристики структуры статистической совокупности применяются показатели, которые называют структурными средними. К ним относятся мода и медиана.

Мода (М о ) – чаще всего встречающийся вариант. Модой называется значение признака, которое соответствует максимальной точке теоретической кривой распределений.

Мода представляет наиболее часто встречающееся или типичное значение.

Мода применяется в коммерческой практике для изучения покупательского спроса и регистрации цен.

В дискретном ряду мода – это варианта с наибольшей частотой. В интервальном вариационном ряду модой считают центральный вариант интервала, который имеет наибольшую частоту (частность).

В пределах интервала надо найти то значение признака, которое является модой.


где х о – нижняя граница модального интервала;

h – величина модального интервала;

f m – частота модального интервала;

f т -1 – частота интервала, предшествующего модальному;

f m +1 – частота интервала, следующего за модальным.

Мода зависит от величины групп, от точного положения границ групп.

Мода – число, которое в действительности встречается чаще всего (является величиной определенной), в практике имеет самое широкое применение (наиболее часто встречающийся тип покупателя).

Медиана (M e – это величина, которая делит численность упорядоченного вариационного ряда на две равные части: одна часть имеет значения варьирующего признака меньшие, чем средний вариант, а другая – большие.

Медиана – это элемент, который больше или равен и одновременно меньше или равен половине остальных элементов ряда распределения.

Свойство медианы заключается в том, что сумма абсолютных отклонений значений признака от медианы меньше, чем от любой другой величины.

Применение медианы позволяет получить более точные результаты, чем при использовании других форм средних.

Порядок нахождения медианы в интервальном вариационном ряду следующий: располагаем индивидуальные значения признака по ранжиру; определяем для данного ранжированного ряда накопленные частоты; по данным о накопленных частотах находим медианный интервал:


где х ме – нижняя граница медианного интервала;

i Me – величина медианного интервала;

f/2 – полусумма частот ряда;

S Me -1 – сумма накопленных частот, предшествующих медианному интервалу;

f Me – частота медианного интервала.

Медиана делит численность ряда пополам, следовательно, она там, где накопленная частота составляет половину или больше половины всей суммы частот, а предыдущая (накопленная) частота меньше половины численности совокупности.