Топливный элемент на водороде: описание, характеристики, принцип работы, фото. Топливные элементы для привода автомобилей

С точки зрения «зеленой» энергетики у водородных топливных элементов крайне высокий КПД - 60%. Для сравнения: КПД лучших двигателей внутреннего сгорания составляет 35-40%. Для солнечных электростанций коэффициент составляет всего 15-20%, но сильно зависит от погодных условий. КПД лучших крыльчатых ветряных электростанций доходит до 40%, что сравнимо с парогенераторами, но ветряки также требуют подходящих погодных условий и дорогого обслуживания.

Как мы видим, по этому параметру водородная энергетика является наиболее привлекательным источником энергии, но все же существует ряд проблем, мешающих ее массовому применению. Самая главная из них - процесс добычи водорода.

Проблемы добычи

Водородная энергетика экологична, но не автономна. Для работы топливному элементу нужен водород, который не встречается на Земле в чистом виде. Водород нужно получать, но все существующие сейчас способы либо очень затратны, либо малоэффективны.

Самым эффективным с точки зрения объёма полученного водорода на единицу затраченной энергии считается метод паровой конверсии природного газа . Метан соединяют с водяным паром при давлении 2 МПа (около 19 атмосфер, т. е. давление на глубине около 190 м) и температуре около 800 градусов, в результате чего получается конвертированный газ с содержанием водорода 55-75%. Для паровой конверсии необходимы огромные установки, которые могут быть применимы лишь на производстве.


Трубчатая печь для паровой конверсии метана - не самый эргономичный способ добычи водорода. Источник: ЦТК-Евро

Более удобный и простой метод - электролиз воды. При прохождении электрического тока через обрабатываемую воду происходит серия электрохимических реакций, в результате которых образуется водород. Существенный недостаток этого способа - большие энергозатраты, необходимые для проведения реакции. То есть получается несколько странная ситуация: для получения водородной энергии нужна… энергия. Во избежание возникновения при электролизе ненужных затрат и сохранения ценных ресурсов некоторые компании стремятся разработать системы полного цикла «электричество - водород- электричество», в которых получение энергии становится возможным без внешней подпитки. Примером такой системы является разработка Toshiba H2One.

Мобильная электростанция Toshiba H2One

Мы разработали мобильную мини-электростанцию H2One, преобразующую воду в водород, а водород в энергию. Для поддержания электролиза в ней используются солнечные батареи, а излишки энергии накапливаются в аккумуляторах и обеспечивают работу системы в отсутствие солнечного света. Полученный водород либо напрямую подается на топливные ячейки, либо отправляется на хранение во встроенный бак. За час электролизер H2One генерирует до 2 м 3 водорода, а на выходе обеспечивает мощность до 55 кВт. Для производства 1 м 3 водорода станции требуется до 2,5 м 3 воды.

Пока станция H2One не способна обеспечить электричеством крупное предприятие или целый город, но для функционирования небольших районов или организаций ее энергии будет вполне достаточно. Благодаря своей мобильности она может использоваться также как и временное решение в условиях стихийных бедствий или экстренного отключения электричества. К тому же, в отличие от дизельного генератора, которому для нормального функционирования необходимо топливо, водородной электростанции достаточно лишь воды.

Сейчас Toshiba H2One используется лишь в нескольких городах в Японии - к примеру, она снабжает электричеством и горячей водой железнодорожную станцию в городе Кавасаки.


Монтаж системы H2One в городе Кавасаки

Водородное будущее

Сейчас водородные топливные элементы обеспечивают энергией и портативные пауэр-банки, и городские автобусы с автомобилями, и железнодорожный транспорт (более подробно об использовании водорода в автоиндустрии мы расскажем в нашем следующем посте). Водородные топливные элементы неожиданно оказались отличным решением для квадрокоптеров - при аналогичной с аккумулятором массе запас водорода обеспечивает до пяти раз большее время полета. При этом мороз никак не влияет на эффективность. Экспериментальные дроны на топливных элементах производства российской компании AT Energy применялись для съемок на Олимпиаде в Сочи.

Стало известно, что на грядущих Олимпийских играх в Токио водород будет использоваться в автомобилях, при производстве электричества и тепла, а также станет главным источником энергии для олимпийской деревни. Для этого по заказу Toshiba Energy Systems & Solutions Corp. в японском городе Намиэ строится одна из крупнейших в мире станций по производству водорода. Станция будет потреблять до 10 МВт энергии, полученной из «зеленых» источников, генерируя электролизом до 900 тонн водорода в год.

Водородная энергетика - это наш «запас на будущее», когда от ископаемого топлива придется окончательно отказаться, а возобновляемые источники энергии не смогут покрывать нужды человечества. Согласно прогнозу Markets&Markets объем мирового производства водорода, который сейчас составляет $115 млрд, к 2022 году вырастет до $154 млрд. Но в ближайшем будущем массовое внедрение технологии вряд ли произойдет, необходимо еще решить ряд проблем, связанных с производством и эксплуатацией специальных энергоустановок, снизить их стоимость. Когда технологические барьеры будут преодолены, водородная энергетика выйдет на новый уровень и, возможно, будет так же распространена, как сегодня традиционная или гидроэнергетика.

Топливные элементы Топливные элементы относятся к химическим источникам тока. Они осуществляют прямое превращение энергии топлива в электричество минуя малоэффективные, идущие с большими потерями, процессы горения. Это электрохимическое устройство в результате высокоэффективного «холодного» горения топлива непосредственно вырабатывает электроэнергию.

Биохимики установили, что биологический водородно-кислородный топливный элемент «вмонтирован» в каждую живую клетку (см. гл.2).

Источником водорода в организме служит пища – жиры, белки и углеводы. В желудке, кишечнике, клетках она в конечном счете раскладывается до мономеров, которые, в свою очередь, после ряда химических превращений дают водород, присоединенный к молекуле-носителю.

Кислород из воздуха попадает в кровь через легкие, соединяется с гемоглобином и разносится по всем тканям. Процесс соединения водорода с кислородом составляет основу биоэнергетики организма. Здесь, в мягких условиях (комнатная температура, нормальное давление, водная среда), химическая энергия с высоким КПД преобразуется в тепловую, механическую (движение мышц), электричество (электрический скат), свет (насекомые излучающие свет).

Человек в который раз повторил созданное природой устройство получения энергии. В то же время этот факт говорит о перспективности направления. Все процессы в природе очень рациональны, поэтому шаги по реальному использованию ТЭ вселяют надежду на энергетическое будущее.

Открытие в 1838 году водородно-кислородного топливного элемента принадлежит английскому ученому У. Грову. Исследуя разложение воды на водород и кислород он обнаружил побочный эффект – электролизер вырабатывал электрический ток.

Что горит в топливном элементе?
Ископаемое топливо (уголь, газ и нефть) состоит в основном из углерода. При сжигании атомы топлива теряют электроны, а атомы кислорода воздуха приобретают их. Так в процессе окисления атомы углерода и кислорода соединяются в продукты горения – молекулы углекислого газа. Этот процесс идет энергично: атомы и молекулы веществ, участвующих в горении, приобретают большие скорости, а это приводит к повышению их температуры. Они начинают испускать свет – появляется пламя.

Химическая реакция сжигания углерода имеет вид:

C + O2 = CO2 + тепло

В процессе горения химическая энергия переходит в тепловую энергию благодаря обмену электронами между атомами топлива и окислителя. Этот обмен происходит хаотически.

Горение – обмен электронов между атомами, а электрический ток – направленное движение электронов. Если в процессе химической реакции заставить электроны совершать работу, то температура процесса горения будет понижаться. В ТЭ электроны отбираются у реагирующих веществ на одном электроде, отдают свою энергию в виде электрического тока и присоединяются к реагирующим веществам на другом.

Основа любого ХИТ – два электрода соединенные электролитом. ТЭ состоит из анода, катода и электролита (см. гл. 2). На аноде окисляется, т.е. отдает электроны, восстановитель (топливо CO или H2), свободные электроны с анода поступают во внешнюю цепь, а положительные ионы удерживаются на границе анод-электролит (CO+, H+). С другого конца цепи электроны подходят к катоду, на котором идет реакция восстановления (присоединение электронов окислителем O2–). Затем ионы окислителя переносятся электролитом к катоду.

В ТЭ вместе сведены вместе три фазы физико-химической системы:

газ (топливо, окислитель);
электролит (проводник ионов);
металлический электрод (проводник электронов).
В ТЭ происходит преобразование энергии окислительно-восстановительной реакции в электрическую, причем, процессы окисления и восстановления пространственно разделены электролитом. Электроды и электролит в реакции не участвуют, но в реальных конструкциях со временем загрязняются примесями топлива. Электрохимическое горение может идти при невысоких температурах и практически без потерь. На рис. p087 показана ситуация в которой в ТЭ поступает смесь газов (CO и H2), т.е. в нем можно сжигать газообразное топливо (см. гл. 1). Таким образом, ТЭ оказывается «всеядным».

Усложняет использование ТЭ то, что для них топливо необходимо «готовить». Для ТЭ получают водород путем конверсии органического топлива или газификации угля. Поэтому структурная схема электростанции на ТЭ, кроме батарей ТЭ, преобразователя постоянного тока в переменный (см гл. 3) и вспомогательного оборудования включает блок получения водорода.

Два направления развития ТЭ

Существуют две сферы применения ТЭ: автономная и большая энергетика.

Для автономного использования основными являются удельные характеристики и удобство эксплуатации. Стоимость вырабатываемой энергии не является основным показателем.

Для большой энергетики решающим фактором является экономичность. Кроме того, установки должны быть долговечными, не содержать дорогих материалов и использовать природное топливо при минимальных затратах на подготовку.

Наибольшие выгоды сулит использование ТЭ в автомобиле. Здесь, как нигде, скажется компактность ТЭ. При непосредственном получении электроэнергии из топлива экономия последнего составит порядка 50%.

Впервые идея использования ТЭ в большой энергетике была сформулирована немецким ученым В. Освальдом в 1894 году. Позднее получила развитие идея создания эффективных источников автономной энергии на основе топливного элемента.

После этого предпринимались неоднократные попытки использовать уголь в качестве активного вещества в ТЭ. В 30-е годы немецкий исследователь Э. Бауэр создал лабораторный прототип ТЭ с твердым электролитом для прямого анодного окисления угля. В это же время исследовались кислородно-водородные ТЭ.

В 1958 году в Англии Ф. Бэкон создал первую кислородно-водородную установку мощностью 5 кВт. Но она была громоздкой из-за использования высокого давления газов (2...4 МПа).

С 1955 года в США К. Кордеш разрабатывал низкотемпературные кислородно-водородные ТЭ. В них использовались угольные электроды с платиновыми катализаторами. В Германии Э. Юст работал над созданием неплатиновых катализаторов.

После 1960 года были созданы демонстрационные и рекламные образцы. Первое практическое применение ТЭ нашли на космических кораблях «Аполлон». Они были основными энергоустановками для питания бортовой аппаратуры и обеспечивали космонавтов водой и теплом.

Основными областями использования автономных установок с ТЭ были военные и военно-морские применения. В конце 60-х годов объем исследований по ТЭ сократился, а после 80-х вновь возрос применительно к большой энергетике.

Фирмой VARTA разработаны ТЭ с использованием двухсторонних газодифузионных электродов. Электроды такого типа называют «Янус». Фирма Siemens разработала электроды с удельной мощностью до 90 Вт/кг. В США работы по кислородно-водородным элементам проводит United Technology Corp.

В большой энергетике очень перспективно применение ТЭ для крупномасштабного накопления энергии, например, получение водорода (см. гл. 1). (солнце и ветер) отличаются рассредоточеностью (см гл. 4). Их серьезное использование, без которого в будущем не обойтись, немыслимо без емких аккумуляторов, запасающих энергию в той или иной форме.

Проблема накопления актуальна уже сегодня: суточные и недельные колебания нагрузки энергосистем заметно снижают их эффективность и требуют так называемых маневренных мощностей. Один из вариантов электрохимического накопителя энергии – топливный элемент в сочетании с электролизерами и газгольдерами*.

* Газгольдер [газ + англ. holder держатель] – хранилище для больших количеств газа.

Первое поколение ТЭ

Наибольшего технологического совершенства достигли среднетемпературные ТЭ первого поколения, работающие при температуре 200...230°С на жидком топливе, природном газе либо на техническом водороде*. Электролитом в них служит фосфорная кислота, которая заполняет пористую углеродную матрицу. Электроды выполнены из углерода, а катализатором является платина (платина используется в количествах порядка нескольких граммов на киловатт мощности).

* Технический водород – продукт конверсии органического топлива, содержащий незначительные примеси окиси углерода.

Одна таких электростанций введена в строй в штате Калифорния 1991 году. Она состоит из восемнадцати батарей массой по 18 т каждая и размещается в корпусе диаметром чуть более 2 м и высотой около 5 м. Продумана процедура замены батареи с помощью рамной конструкции движущейся по рельсам.

Две электростанции на ТЭ США поставили в Японию. Первая из них была пущена еще в начале 1983 года. Эксплуатационные показатели станции соответствовали расчетным. Она работала с нагрузкой от 25 до 80% от номинальной. КПД достигал 30...37% – это близко к современным крупным ТЭС. Время ее пуска из холодного состояния – от 4 ч до 10 мин., а продолжительность изменения мощности от нулевой до полной составляет всего 15 с.

Сейчас в разных районах США испытываются небольшие теплофикационные установки мощностью по 40 кВт с коэффициентом использования топлива около 80%. Они могут нагревать воду до 130°С и размещаются в прачечных, спортивных комплексах, на пунктах связи и т.д. Около сотни установок уже проработали в общей сложности сотни тысяч часов. Экологическая чистота электростанций на ТЭ позволяет размещать их непосредственно в городах.

Первая топливная электростанция в Нью-Йорке, мощностью 4,5 МВт, заняла территорию в 1,3 га. Теперь для новых станций с мощностью в два с половиной раза большей нужна площадка размером 30x60 м. Строятся несколько демонстрационных электростанций мощностью по 11 МВт. Поражают сроки строительства (7 месяцев) и площадь (30х60 м), занимаемая электростанцией. Расчетный срок службы новых электростанций – 30 лет.

Второе и третье поколение ТЭ

Лучшими характеристиками обладают уже проектирующиеся модульные установки мощностью 5 МВт со среднетемпературными топливными элементами второго поколения. Они работают при температурах 650...700°С. Их аноды делают из спеченных частиц никеля и хрома, катоды – из спеченного и окисленного алюминия, а электролитом служит расплав смеси карбонатов лития и калия. Повышенная температура помогает решить две крупные электрохимические проблемы:

снизить «отравляемость» катализатора окисью углерода;
повысить эффективность процесса восстановления окислителя на катоде.
Еще эффективнее будут высокотемпературные топливные элементы третьего поколения с электролитом из твердых оксидов (в основном двуокиси циркония). Их рабочая температура – до 1000°С. КПД энергоустановок с такими ТЭ близок к 50%. Здесь в качестве топлива пригодны и продукты газификации твердого угля со значительным содержанием окиси углерода. Не менее важно, что сбросовое тепло высокотемпературных установок можно использовать для производства пара, приводящего в движение турбины электрогенераторов.

Фирма Vestingaus занимается топливными элементами на твердых оксидах с 1958 года. Она разрабатывает энергоустановки мощностью 25...200 кВт, в которых можно использовать газообразное топливо из угля. Готовятся к испытаниям экспериментальные установки мощностью в несколько мегаватт. Другая американская фирма Engelgurd проектирует топливные элементы мощностью 50 кВт работающие на метаноле с фосфорной кислотой в качестве электролита.

В создание ТЭ включается все больше фирм во всем мире. Американская United Technology и японская Toshiba образовали корпорацию International Fuel Cells. В Европе топливными элементами занимаются бельгийско-нидерландский консорциум Elenko, западногерманская фирма Siemens, итальянская Fiat, английская Jonson Metju.

Виктор ЛАВРУС.

Если вам понравился этот материал, то предлагаем вам подборку самых лучших материалов нашего сайта по мнению наших читателей. Подборку - ТОП об экологически безопасных технологиях, новой науке и научных открытиях вы можете найти там, где вам максимально удобно

Топливный элемент - что это такое? Когда и как он появился? Зачем он нужен и почему о них в наше время так часто говорят? Каковы его область примения, характеристики и свойства? Неудержимый прогресс требует ответов на все эти вопросы!

Что такое топливный элемент?

Топливный элемент - это химический источник тока или электрохимический генератор, это устройство для преобразования химической энергии в электрическую. В современной жизни химические источники тока используются повсеместно и представляют собой аккумуляторы мобильных телефонов, ноутбуков, КПК, а также аккумуляторные батареи в автомобилях, источниках бесперебойного питания и т.п. Следующим этапом развития данной области будет повсеместное распространение топливных элементов и это уже никем неопровергаемый факт.

История топливных элементов

История топливных элементов - это ещё одна история о том, как некогда открытые на Земле свойства вещества нашли широкое применение далеко в космосе, а на рубеже тысячелетий вернулись с небес на Землю.

Всё началось в 1839 году , когда немецкий химик Кристиан Шёнбейн опубликовал принципы работы топливного элемента в «Философском журнале». В этом же году англичанин, выпускник Оксфорда, Уильям Роберт Гроув сконструировал гальванический элемент, в последствии названный гальваническим элементом Гроува, он же признан первым топливным элементом. Само название "топливный элемент" было подарено изобретению в год его юбилея - в 1889 году. Людвиг Монд и Карл Лангер - авторы термина.

Немного ранее, в 1874г., Жюль Верн в романе «Таинственный остров» предсказал нынешнюю энергетическую ситуацию, написав, что «Вода в один прекрасный день будет использоваться в качестве топлива, применяться будут водород и кислород, из которых она состоит».

Тем временем, новая технология электроснабжения постепенно совершенствовалась, а начиная с 50-х годов XX века уже и года не проходило без анонсов новейших изобретений в этой области. В 1958 году в США появился первый трактор, работающий на топливных элементах, в 1959г. вышел в свет 5кВт-ный источник питания для сварочной машины, и т.д. В 70-х годах водородные технологии взлетели в космос: появились самолёты и ракетные двигатели на водороде. В 60-х годах РКК "Энергия"разрабатывала топливные элементы для советской лунной программы. Программа "Буран" также не обошлась без них: были разработаны щелочные 10кВт-ные топливные элементы. А ближе к концу века топливные элементы пересекли нулевую высоту над уровнем моря - на их основе разработано электроснабжение немецкой подводной лодки. Возвращаясь на Землю, в 2009 году в США запустили в эксплуатацию первый локомотив. Естественно, на топливных элементах.

Во всей прекрасной истории топливных элементов интересно то, что колесо по-прежнему остается неимеющим аналогов в природе изобретением человечества. Дело в том, что по своему устройству и принципу действия топливные элементы аналогичны биологической клетке, которая, по сути, представляет собой миниатюрный водородно-кислородный топливный элемент. В итоге человек в очередной раз изобрел то, чем природа пользуется уже миллионы лет.

Принцип работы топливных элементов

Принцип работы топливных элементов очевиден даже из школьной программы по химии и именно он был заложен в опытах Уильяма Гроува 1839 года. Всё дело в том, что процесс электролиза воды (диссоциации воды) является обратимым. Как верно то, что, при пропускании электрического тока через воду, последняя расщепляется на водород и кислород, так верно и обратное: водород и кислород можно соединить с получением воды и электричества. В опыте Гроува два электрода размещались в камере, в которую подавались под давлением ограниченные порции чистого водорода и кислорода. В силу небольших объемов газа, а также благодаря химическим свойствам угольных электродов в камере происходила медленная реакция с выделением тепла, воды и, самое главное, с образованием разности потенциалов между электродами.

Простейший топливный элемент состоит из специальной мембраны, используемой как электролит, по обе стороны которой нанесены порошкообразные электроды. Водород поступает на одну сторону (анод), а кислород (воздух) - на другую (катод). На каждом электроде происходят разные химические реакции. На аноде водород распадается на смесь протонов и электронов. В некоторых топливных элементах электроды окружены катализатором, обычно выполненным из платины или других благородных металлов, способствующих протеканию реакции диссоциации:

2H 2 → 4H + + 4e -

где H 2 - двухатомная молекула водорода (форма, в которой водород присутствует в виде газа); H + - ионизированный водород (протон); е - - электрон.

С катодной стороны топливного элемента протоны (прошедшие через электролит) и электроны (которые прошли через внешнюю нагрузку) воссоединяются и вступают в реакцию с подаваемым на катод кислородом с образованием воды:

4H + + 4e - + O 2 → 2H 2 O

Суммарная реакция в топливном элементе записывается так:

2H 2 + O 2 → 2H 2 O

Работа топливного элемента основана на том, что электролит пропускает через себя протоны (по направлению к катоду), а электроны - нет. Электроны движутся к катоду по внешнему проводящему контуру. Это движение электронов и есть электрический ток, который может быть использован для приведения в действие внешнего устройства, подсоединенного к топливному элементу (нагрузка, например, лампочка):

В своей работе топливные элементы используют водородное топливо и кислород. Проще всего с кислородом - он забирается из воздуха. Водород может подаваться непосредственно из некой ёмкости или путем выделения его из внешнего источника топлива (природного газа, бензина или метилового спирта - метанола). В случае внешнего источника его необходимо химически преобразовать, чтобы извлечь водород. В настоящее время большинство технологий топливных элементов, разрабатываемых для портативных устройств, задействуют именно метанол.

Характеристики топливных элементов

    Топливные элементы являются аналогами существующих аккумуляторов в том смысле, что в обоих случаях электрическая энергия получается из химической. Но есть и принципиальные отличия:

    • они работают только пока топливо и окислитель поступают от внешнего источника (т.е. они не могут накапливать электрическую энергию),

      химический состав электролита в процессе работы не изменяется (топливный элемент не нуждается в перезарядке),

      они полностью не зависимы от электричества (в то время как обычные аккумуляторы запасают энергию из электросети).

    Каждый топливный элемент создаёт напряжение в 1В . Большее напряжение достигается последовательным их соединением. Увеличение мощности (тока) реализуется через параллельное соединение каскадов из последовательно соединенных топливных элементов.

    У топливных элементов нет жёсткого ограничения на КПД , как у тепловых машин (КПД цикла Карно является максимально возможным КПД среди всех тепловых машин с такими же минимальной и максимальной температурами).

    Высокий КПД достигается благодаря прямому превращению энергии топлива в электроэнергию. Если в дизель-генераторных установках топливо сначала сжигается, полученный пар или газ вращает турбину или вал двигателя внутреннего сгорания, которые в свою очередь вращают электрический генератор. Результатом становится КПД максимум в 42%, чаще же составляет порядка 35-38%. Более того, из-за множества звеньев, а также из-за термодинамических ограничений по максимальному КПД тепловых машин, существующий КПД вряд ли удастся поднять выше. У существующих топливных элементов КПД составляет 60-80% ,

    КПД почти не зависит от коэффициента загрузки ,

    Ёмкость в несколько раз выше , чем в существующих аккумуляторах,

    Полное отсутствие экологически вредных выбросов . Выделяется только чистый водяной пар и тепловая энергия (в отличие от дизельных генераторов, имеющих загрязняющие окружающую среду выхлопы и требующих их отвода).

Виды топливных элементов

Топливные элементы классифицируются по следующим признакам:

    по используемому топливу,

    по рабочему давлению и температуре,

    по характеру применения.

В целом, выделяют следующие типы топливных элементов :

    Твердооксидный топливный элемент (Solid-oxide fuel cells - SOFC);

    Топливный элемент с протонообменной мембраной (Proton-exchange membrane fuel cell - PEMFC);

    Обратимый топливный элемент (Reversible Fuel Cell - RFC);

    Прямой метанольный топливный элемент (Direct-methanol fuel cell - DMFC);

    Расплавной карбонатный топливный элемент (Molten-carbonate fuel cells - MCFC);

    Фосфорнокислый топливный элемент (Phosphoric-acid fuel cells - PAFC);

    Щелочной топливный элемент (Alkaline fuel cells - AFC).

Одним из типов топливных элементов, работающих при нормальных температурах и давлениях с использованием водорода и кислорода, являются элементы с ионообменной мембраной. Образующаяся вода не растворяет твердый электролит, стекает и легко отводится.

Проблемы топливных элементов

    Главная проблема топливных элементов связана с необходимостью наличия "упакованного" водорода, который можно было бы свободно приобрести. Очевидно, проблема должна решиться со временем, но пока ситуация вызывает легкую улыбку: что первично - курица или яйцо? Топливные элементы ещё не настолько развиты, чтобы строить водородные заводы, но их прогресс немыслим без этих заводов. Здесь же отметим проблему источника водорода. На настоящий момент водород получают из природного газа, но повышение стоимости энергоносителей повысит и цену водорода. При этом в водороде из природного газа неизбежно присутствие CO и H 2 S (сероводород), которые отравляют катализатор.

    Распространенные платиновые катализаторы используют очень дорогой и невосполнимый в природе металл - платину. Однако данную проблему планируется решить использованием катализаторов на основе ферментов, являющихся дешевым и легкопроизводимым веществом.

    Проблемой является и выделяющееся тепло. Эффективность резко возрастет, если генерируемое тепло направить в полезное русло - производить тепловую энергию для системы теплоснабжения, использовать в качестве бросового тепла в абсорбционных холодильных машинах и т.п.

Топливные элементы на метаноле (DMFC): реальное применение

Наивысший практический интерес на сегодняшний день представляют топливные элементы прямого действия на основе метанола (Direct Methanol Fuel Cell, DMFC). Ноутбук Portege M100, работающий на топливном элементе DMFC выглядит следующим образом:

Типичная схема DMFC-элемента содержит, помимо анода, катода и мембраны, несколько дополнительных комплектующих: картридж с топливом, датчик метанола, насос для циркуляции топлива, воздушный насос, теплообменник и т.д.

Время работы, например, ноутбука по сравнению с аакумуляторами планируется увеличить в 4 раза (до 20 часов), мобильного телефона - до 100 часов в активном режиме и до полугода в режиме ожидания. Подзарядка будет осуществляться добавлением порции жидкого метанола.

Основной задачей является поиск вариантов использования раствором метанола с наивысшей его концентрацией. Проблема в том, что метанол - достаточно сильный яд, смертельный в дозах от нескольких десятков граммов. Но концентрация метанола напрямую влияет на длительность работы. Если ранее применялся 3-10%-й раствор метанола, то уже появились мобильные телефоны и КПК с использованием 50%-го раствора, а в 2008 году в лабораторных условиях специалистами MTI MicroFuel Cells и, чуть позже, Toshiba получены топливные элементы, работающие на чистом метаноле.

За топливными элементами - будущее!

Наконец, об очевидности большого будущего топливных элементов говорит тот факт, что международная организация IEC (International Electrotechnical Commission), определяющая индустриальные стандарты для электронных устройств, уже объявила о создании рабочей группы для разработки международного стандарта на миниатюрные топливные элементы.

Часть 1

В настоящей статье более подробно рассматривается принцип действия топливных элементов, их устройство, классификация, достоинства и недостатки, область применения, эффективность, история создания и современные перспективы использования. Во второй части статьи , которая будет опубликована в следующем номере журнала «АВОК», приводятся примеры объектов, на которых в качестве источников тепло- и электроснабжения (или только электроснабжения) использовались различные типы топливных элементов.

Введение

Топливные элементы представляют собой очень эффективный, надежный, долговечный и экологически чистый способ получения энергии.

Первоначально применявшиеся лишь в космической отрасли, в настоящее время топливные элементы все активней используются в самых разных областях - как стационарные электростанции, автономные источники тепло- и электроснабжения зданий, двигатели транспортных средств, источники питания ноутбуков и мобильных телефонов. Часть этих устройств является лабораторными прототипами, часть проходит предсерийные испытания или используется в демонстрационных целях, но многие модели выпускаются серийно и применяются в коммерческих проектах.

Топливный элемент (электрохимический генератор) - устройство, которое преобразует химическую энергию топлива (водорода) в электрическую в процессе электрохимической реакции напрямую, в отличие от традиционных технологий, при которых используется сжигание твердого, жидкого и газообразного топлива. Прямое электрохимическое преобразование топлива очень эффективно и привлекательно с точки зрения экологии, поскольку в процессе работы выделяется минимальное количество загрязняющих веществ, а также отсутствуют сильные шумы и вибрации.

С практической точки зрения топливный элемент напоминает обычную гальваническую батарею. Отличие заключается в том, что изначально батарея заряжена, т. е. заполнена «топливом». В процессе работы «топливо» расходуется и батарея разряжается. В отличие от батареи топливный элемент для производства электрической энергии использует топливо, подаваемое от внешнего источника (рис. 1).

Для производства электрической энергии может использоваться не только чистый водород, но и другое водородосодержащее сырье, например, природный газ, аммиак, метанол или бензин. В качестве источника кислорода, также необходимого для реакции, используется обычный воздух.

При использовании чистого водорода в качестве топлива продуктами реакции помимо электрической энергии являются тепло и вода (или водяной пар), т. е. в атмосферу не выбрасываются газы, вызывающие загрязнение воздушной среды или вызывающие парниковый эффект. Если в качестве топлива используется водородосодержащее сырье, например, природный газ, побочным продуктом реакции будут и другие газы, например, оксиды углерода и азота, однако его количество значительно ниже, чем при сжигании такого же количества природного газа.

Процесс химического преобразования топлива с целью получения водорода называется реформингом, а соответствующее устройство - реформером.

Достоинства и недостатки топливных элементов

Топливные элементы энергетически более эффективны, чем двигатели внутреннего сгорания, поскольку для топливных элементов нет термодинамического ограничения коэффициента использования энергии. Коэффициент полезного действия топливных элементов составляет 50 %, в то время как КПД двигателей внутреннего сгорания составляет 12-15 %, а КПД паротурбинных энергетических установок не превышает 40 %. При использовании тепла и воды эффективность топливных элементов еще больше увеличивается.

В отличие, например, от двигателей внутреннего сгорания КПД топливных элементов остается очень высоким и в том случае, когда они работают не на полной мощности. Кроме этого, мощность топливных элементов может быть увеличена простым добавлением отдельных блоков, при этом КПД не меняется, т. е. большие установки столь же эффективны, как и малые. Эти обстоятельства позволяют очень гибко подбирать состав оборудования в соответствии с пожеланиями заказчика и в конечном итоге приводят к снижению затрат на оборудование.

Важное преимущество топливных элементов - их экологичность. Выбросы в атмосферу загрязняющих веществ при эксплуатации топливных элементов настолько низки, что в некоторых районах США для их эксплуатации не требуется специального разрешения от государственных органов, контролирующих качество воздушной среды.

Топливные элементы можно размещать непосредственно в здании, при этом снижаются потери при транспортировке энергии, а тепло, образующееся в результате реакции, можно использовать для теплоснабжения или горячего водоснабжения здания. Автономные источники тепло- и электроснабжения могут быть очень выгодны в отдаленных районах и в регионах, для которых характерна нехватка электроэнергии и ее высокая стоимость, но в то же время имеются запасы водородосодержащего сырья (нефти, природного газа).

Достоинствами топливных элементов являются также доступность топлива, надежность (в топливном элементе отсутствуют движущиеся части), долговечность и простота эксплуатации.

Один из основных недостатков топливных элементов на сегодняшний день - их относительно высокая стоимость, но этот недостаток может быть вскоре преодолен - все больше компаний выпускают коммерческие образцы топливных элементов, они непрерывно совершенствуются, а их стоимость снижается.

Наиболее эффективно использование в качестве топлива чистого водорода, однако это потребует создания специальной инфраструктуры для его выработки и транспортировки. В настоящее время все коммерческие образцы используют природный газ и подобное топливо. Автотранспортные средства могут использовать обыкновенный бензин, что позволит сохранить существующую развитую сеть автозаправочных станций. Однако использование такого топлива приводит к вредным выбросам в атмосферу (хотя и очень низким) и усложняет (а следовательно, и удорожает) топливный элемент. В перспективе рассматривается возможность использования экологически чистых возобновляемых источников энергии (например, солнечной энергии или энергии ветра) для разложения воды на водород и кислород методом электролиза, а затем преобразования получившегося топлива в топливном элементе. Такие комбинированные установки, работающие в замкнутом цикле, могут представлять собой совершенно экологически чистый, надежный, долговечный и эффективный источник энергии.

Еще одна особенность топливных элементов состоит в том, что они наиболее эффективны при использовании одновременно как электрической, так и тепловой энергии. Однако возможность использования тепловой энергии есть не на каждом объекте. В случае использования топливных элементов только для выработки электрической энергии их КПД уменьшается, хотя превышает КПД «традиционных» установок.

История и современное использование топливных элементов

Принцип действия топливных элементов был открыт в 1839 году. Английский ученый Уильям Гроув (William Robert Grove, 1811-1896) обнаружил, что процесс электролиза - разложения воды на водород и кислород посредством электрического тока - обратим, т. е. водород и кислород можно объединять в молекулы воды без горения, но с выделением тепла и электрического тока. Прибор, в котором удалось провести такую реакцию, Гроув назвал «газовой батареей» («gas battery»), которая представляла собой первый топливный элемент.

Активное развитие технологий использования топливных элементов началось после Второй мировой войны, и связано оно с аэрокосмической отраслью. В это время велись поиски эффективного и надежного, но при этом достаточно компактного источника энергии. В 1960-х годах специалисты НАСА (National Aeronautics and Space Administration, NASA) выбрали топливные элементы в качестве источника энергии для космических кораблей программ «Apollo» (пилотируемые полеты к Луне), «Apollo-Soyuz», «Gemini» и «Skylab». На корабле «Apollo» были использованы три установки мощностью 1,5 кВт (пиковая мощность 2,2 кВт), использующие криогенный водород и кислород для производства электроэнергии, тепла и воды. Масса каждой установки составляла 113 кг. Эти три ячейки работали параллельно, но энергии, вырабатываемой одной установкой, было достаточно для безопасного возвращения. В течение 18 полетов топливные элементы наработали в общей сложности 10 000 часов без каких-либо отказов. В настоящее время топливные элементы применяются в космических кораблях многоразового использования «Space Shuttle», где используются три установки мощностью 12 Вт, которые вырабатывают всю электрическую энергию на борту космического корабля (рис. 2). Вода, получаемая в результате электрохимической реакции, используется в качестве питьевой, а также для охлаждения оборудования.

В нашей стране также велись работы по созданию топливных элементов для использования в космонавтике. Например, топливные элементы использовались для энергоснабжения советского корабля многоразового использования «Буран».

Разработки методов коммерческого использования топливных элементов начались в середине 1960-х годов. Эти разработки частично финансировались государственными организациями.

В настоящее время развитие технологий использования топливных элементов идет в нескольких направлениях. Это создание стационарных электростанций на топливных элементах (как для централизованного, так и для децентрализованного энергоснабжения), энергетических установок транспортных средств (созданы образцы автомобилей и автобусов на топливных элементах, в т. ч. и в нашей стране) (рис. 3), а также источников питания различных мобильных устройств (портативных компьютеров, мобильных телефонов и т. д.) (рис. 4).

Примеры использования топливных элементов в различных областях приведены в табл. 1.

Одной из первых коммерческих моделей топливных элементов, предназначенных для автономного тепло- и электроснабжения зданий, стала модель «PC25 Model A» производства компании «ONSI Corporation» (сейчас «United Technologies, Inc.»). Этот топливный элемент номинальной мощностью 200 кВт относится к типу элементов с электролитом на основе ортофосфорной кислоты (Phosphoric Acid Fuel Cells, PAFC). Цифра «25» в названии модели означает порядковый номер конструкции. Большинство предыдущих моделей были экспериментальными или испытательными образцами, например, модель «PC11» мощностью 12,5 кВт, появившаяся в 1970-х годах. В новых моделях увеличивалась мощность, снимаемая с отдельной топливной ячейки, а также уменьшалась стоимость киловатта произведенной энергии. В настоящее время одной из самых эффективных коммерческих моделей является топливный элемент «PC25 Model C». Как и модель «A», это полностью автоматический топливный элемент типа PAFC мощностью 200 кВт, предназначенный для установки непосредственно на обслуживаемом объекте в качестве автономного источника тепло- и электроснабжения. Такой топливный элемент может устанавливаться снаружи здания. Внешне он представляет собой параллелепипед длиной 5,5 м, шириной и высотой 3 м, массой 18 140 кг. Отличие от предыдущих моделей - усовершенствованный реформер и более высокая плотность тока.

Таблица 1
Область применения топливных элементов
Область
применения
Номинальная
мощность
Примеры использования
Стационарные
установки
5–250 кВт и
выше
Автономные источники тепло- и электроснабжения жилых, общественных и промышленных зданий, источники бесперебойного питания, резервные и аварийные источники электроснабжения
Портативные
установки
1–50 кВт Дорожные указатели, грузовые и железнодорожные рефрижераторы, инвалидные коляски, тележки для гольфа, космические корабли и спутники
Мобильные
установки
25–150 кВт Автомобили (опытные образцы создали, например, «DaimlerCrysler», «FIAT», «Ford», «General Motors», «Honda», «Hyundai», «Nissan», «Toyota», «Volkswagen», ВАЗ), автобусы (например, «MAN», «Neoplan», «Renault») и другие транспортные средства, военные корабли и субмарины
Микроустройства 1–500 Вт Мобильные телефоны, ноутбуки, карманные компьютеры (PDA), различные бытовые электронные устройства, современные военные приборы

В некоторых типах топливных элементов химический процесс может быть обращен: при подаче на электроды разности потенциалов воду можно разложить на водород и кислород, которые собираются на пористых электродах. При подключении нагрузки такой регенеративный топливный элемент начнет вырабатывать электрическую энергию.

Перспективное направление использования топливных элементов - использование их совместно с возобновляемыми источниками энергии, например, фотоэлектрическими панелями или ветроэнергетическими установками. Такая технология позволяет полностью избежать загрязнения атмосферы. Подобную систему планируется создать, например, в учебном центре Адама Джозефа Льюиса в Оберлине (см. «АВОК», 2002, № 5, с. 10). В настоящее время в качестве одного из источников энергии в этом здании используются солнечные батареи. Совместно со специалистами НАСА разработан проект использования фотоэлектрических панелей для получения водорода и кислорода из воды методом электролиза. Затем водород используется в топливных элементах для получения электрической энергии и горячей воды. Это позволит зданию поддерживать работоспособность всех систем при облачных днях и в ночное время.

Принцип действия топливных элементов

Рассмотрим принцип действия топливного элемента на примере простейшего элемента с протонообменной мембраной (Proton Exchange Membrane, PEM). Такой элемент состоит из полимерной мембраны, помещенной между анодом (положительным электродом) и катодом (отрицательным электродом) вместе с анодным и катодным катализаторами. Полимерная мембрана используется в качестве электролита. Схема PEM-элемента приведена на рис. 5.

Протонообменная мембрана (PEM) представляет собой тонкое (толщиной примерно в 2-7 листов обыкновенной бумаги) твердое органическое соединение. Эта мембрана функционирует как электролит: разделяет вещество на положительно и отрицательно заряженные ионы в присутствии воды.

На аноде происходит окислительный процесс, а на катоде - восстановительный. Анод и катод в PEM-элементе сделаны из пористого материала, представляющего собой смесь частичек углерода и платины. Платина выступает в роли катализатора, способствующего протеканию реакции диссоциации. Анод и катод выполнены пористыми для свободного прохождения сквозь них водорода и кислорода соответственно.

Анод и катод помещены между двумя металлическими пластинами, которые подводят к аноду и катоду водород и кислород, а отводят тепло и воду, а также электрическую энергию.

Молекулы водорода сквозь каналы в пластине поступают на анод, где происходит разложение молекул на отдельные атомы (рис. 6).

Рисунок 5. ()

Схема топливного элемента с протонообменной мембраной (PEM-элемента)

Рисунок 6. ()

Молекулы водорода сквозь каналы в пластине поступают на анод, где происходит разложение молекул на отдельные атомы

Рисунок 7. ()

В результате хемосорбции в присутствии катализатора атомы водорода превращаются в протоны

Рисунок 8. ()

Положительно заряженные ионы водорода через мембрану диффундируют к катоду, а поток электронов направляется к катоду через внешнюю электрическую цепь, к которой подключена нагрузка

Рисунок 9. ()

Кислород, подаваемый на катод, в присутствии катализатора вступает в химическую реакцию с ионами водорода из протонообменной мембраны и электронами из внешней электрической цепи. В результате химической реакции образуется вода

Затем в результате хемосорбции в присутствии катализатора атомы водорода, отдавая каждый по одному электрону e – , превращаются в положительно заряженные ионы водорода H + , т. е. протоны (рис. 7).

Положительно заряженные ионы водорода (протоны) через мембрану диффундируют к катоду, а поток электронов направляется к катоду через внешнюю электрическую цепь, к которой подключена нагрузка (потребитель электрической энергии) (рис. 8).

Кислород, подаваемый на катод, в присутствии катализатора вступает в химическую реакцию с ионами водорода (протонами) из протонообменной мембраны и электронами из внешней электрической цепи (рис. 9). В результате химической реакции образуется вода.

Химическая реакция в топливном элементе других типов (например, с кислотным электролитом, в качестве которого используется раствор ортофосфорной кислоты H 3 PO 4) абсолютно идентична химической реакции в топливном элементе с протонообменной мембраной.

В любом топливном элементе часть энергии химической реакции выделяется в виде тепла.

Поток электронов во внешней цепи представляет собой постоянный ток, который используется для совершения работы. Размыкание внешней цепи или прекращение движения ионов водорода останавливает химическую реакцию.

Количество электрической энергии, производимой топливным элементом, зависит от типа топливного элемента, геометрических размеров, температуры, давления газа. Отдельный топливный элемент обеспечивают ЭДС менее 1,16 В. Можно увеличить размеры топливных элементов, однако на практике используют несколько элементов, соединенных в батареи (рис. 10).

Устройство топливных элементов

Рассмотрим устройство топливного элемента на примере модели «PC25 Model C». Схема топливного элемента приведена на рис. 11.

Топливный элемент «PC25 Model C» состоит из трех основных частей: топливного процессора, собственно секции выработки энергии и преобразователя напряжения.

Основная часть топливного элемента - секция выработки энергии - представляет собой батарею, составленную из 256 отдельных топливных ячеек. В состав электродов топливных ячеек входит платиновый катализатор. Посредством этих ячеек вырабатывается постоянный электрический ток 1 400 ампер при напряжении 155 вольт. Размеры батареи - примерно 2,9 м в длину и 0,9 м в ширину и высоту.

Поскольку электрохимический процесс идет при температуре 177 °C, необходимо нагреть батарею в момент пуска и отводить от нее тепло в процессе эксплуатации. Для этого в состав топливного элемента входит отдельный водяной контур, а батарея оборудована специальными охлаждающими пластинами.

Топливный процессор позволяет преобразовать природный газ в водород, необходимый для электрохимической реакции. Этот процесс называется реформингом. Основной элемент топливного процессора - реформер. В реформере природный газ (или другое водородсодержащее топливо) взаимодействует с водяным паром при высокой температуре (900 °C) и высоком давлении в присутствии катализатора - никеля. При этом происходят следующие химические реакции:

CH 4 (метан) + H 2 O 3H 2 + CO

(реакция эндотермическая, с поглощением тепла);

CO + H 2 O H 2 + CO 2

(реакция экзотермическая, с выделением тепла).

Общая реакция выражается уравнением:

CH 4 (метан) + 2H 2 O 4H 2 + CO 2

(реакция эндотермическая, с поглощением тепла).

Для обеспечения высокой температуры, требуемой для преобразования природного газа, часть отработанного топлива из батареи топливных элементов направляется на горелку, которая поддерживает требуемую температуру реформера.

Пар, необходимый для реформинга, образуется из конденсата, образовавшегося при работе топливного элемента. При этом используется тепло, отводимое от батареи топливных ячеек (рис. 12).

В батарее топливных ячеек вырабатывается неустойчивый постоянный ток, который отличается низким напряжением и большой силой тока. Для преобразования его в переменный ток, отвечающий промышленным стандартам, используется преобразователь напряжения. Кроме этого, в состав блока преобразователя напряжения входят различные управляющие устройства и схемы защитной блокировки, позволяющие отключать топливный элемент в случае различных сбоев.

В таком топливном элементе примерно 40 % энергии топлива может быть преобразовано в электрическую энергию. Примерно столько же, около 40 % энергии топлива, может быть преобразовано в тепловую энергию, используемую затем в качестве источника тепла для отопления, горячего водоснабжения и подобных целей. Таким образом, суммарный КПД такой установки может достигать 80 %.

Важным достоинством такого источника тепло- и электроснабжения является возможность его автоматической работы. Для обслуживания владельцам объекта, на котором установлен топливный элемент, не требуется содержать специально обученный персонал - периодическое обслуживание может осуществляться работниками эксплуатирующей организации.

Типы топливных элементов

В настоящее время известно несколько типов топливных элементов, различающихся составом использованного электролита. Наибольшее распространение получили следующие четыре типа (табл. 2):

1. Топливные элементы с протонообменной мембраной (Proton Exchange Membrane Fuel Cells, PEMFC).

2. Топливные элементы на основе ортофосфорной (фосфорной) кислоты (Phosphoric Acid Fuel Cells, PAFC).

3. Топливные элементы на основе расплавленного карбоната (Molten Carbonate Fuel Cells, MCFC).

4. Твердотельные оксидные топливные элементы (Solid Oxide Fuel Cells, SOFC). В настоящее время самый большой парк топливных элементов построен на основе технологии PAFC.

Одной из ключевых характеристик разных типов топливных элементов является рабочая температура. Во многом именно температура определяет область применения топливных элементов. Например, высокая температура критична для ноутбуков, поэтому для этого сегмента рынка разрабатываются топливные элементы с протонообменной мембраной, отличающиеся низкими рабочими температурами.

Для автономного энергоснабжения зданий необходимы топливные элементы высокой установочной мощности, и при этом имеется возможность использования тепловой энергии, поэтому для этих целей могут использоваться и топливные элементы других типов.

Топливные элементы с протонообменной мембраной (PEMFC)

Эти топливные элементы функционируют при относительно низких рабочих температурах (60-160 °C). Они отличаются высокой удельной мощностью, позволяют быстро регулировать выходную мощность, могут быть быстро включены. Недостаток этого типа элементов - высокие требования к качеству топлива, поскольку загрязненное топливо может вывести из строя мембрану. Номинальная мощность топливных элементов этого типа составляет 1-100 кВт.

Топливные элементы с протонообменной мембраной первоначально были разработаны корпорацией «General Electric» в 1960-х годах по заказу НАСА. Этот тип топливного элемента использует твердотельный полимерный электролит, названный протонообменной мембраной (Proton Exchange Membrane, PEM). Через протонообменную мембрану могут перемещаться протоны, но через нее не проходят электроны, в результате чего между катодом и анодом возникает разность потенциалов. Из-за простоты и надежности такие топливные элементы использовались в качестве источника энергии на пилотируемом космическом корабле «Gemini».

Этот тип топливных элементов применяется в качестве источников питания для широкого спектра различных устройств, в т. ч. опытных образцов и прототипов, от мобильных телефонов до автобусов и стационарных систем питания. Низкая рабочая температура позволяет использовать такие элементы для питания различных типов сложных электронных устройств. Менее эффективно их применение в качестве источника тепло- и электроснабжения общественных и промышленных зданий, где требуются большие объемы тепловой энергии. В то же время, такие элементы перспективны в качестве автономного источника электроснабжения небольших жилых зданий типа коттеджей, построенных в регионах с жарким климатом.

Таблица 2
Типы топливных элементов
Тип элемента Рабочие
температуры,
°С
КПД выход
электрической
энергии), %
Суммарный
КПД, %
Топливные элементы с
протонообменной мембраной
(PEMFC)
60–160 30–35 50–70
Топливные элементы
на основе ортофосфорной
(фосфорной) кислоты (PAFC)
150–200 35 70–80
Топливные элементы на основе
расплавленного карбоната
(MCFC)
600–700 45–50 70–80
Твердотельные оксидные
топливные элементы (SOFC)
700–1 000 50–60 70–80

Топливные элементы на основе ортофосфорной кислоты (PAFC)

Испытания топливных элементов этого типа были проведены уже в начале 1970-х годов. Диапазон рабочих температур - 150-200 °C. Основная область применения - автономные источники тепло- и электроснабжения средней мощности (около 200 кВт).

В качестве электролита в этих топливных элементах используется раствор фосфорной кислоты. Электроды выполнены из бумаги, покрытой углеродом, в котором рассеян платиновый катализатор.

Электрический КПД топливных элементов PAFC составляет 37-42 %. Однако, поскольку эти топливные элементы работают при достаточно высокой температуре, то имеется возможность использовать пар, образующийся в результате работы. В этом случае общий КПД может достигать 80 %.

Для производства энергии водородсодержащее сырье необходимо преобразовать в чистый водород в процессе реформинга. Например, если в качестве топлива используется бензин, то необходимо удалить серосодержащие соединения, поскольку сера может вывести из строя платиновый катализатор.

Топливные элементы типа PAFC были первыми коммерческим топливными элементами, использование которых стало оправданным с экономической точки зрения. Наиболее распространенной моделью стал топливный элемент «PC25» мощностью 200 кВт производства «ONSI Corporation» (сейчас «United Technologies, Inc.») (рис. 13). Например, эти элементы используются в качестве источника тепловой и электрической энергии в полицейском участке в Центральном Парке Нью-Йорка или в качестве дополнительного источника энергии высотного здания «Conde Nast Building & Four Times Square». Самая большая установка этого типа проходит испытания в качестве электростанции мощностью 11 МВт, расположенной в Японии.

Топливные элементы на основе ортофосфорной кислоты используются и в качестве источника энергии в транспортных средствах. Например, в 1994 году корпорация «H-Power Corp.», Джорджтаунский университет и Министерство энергетики США оборудовали автобус энергетической установкой мощностью 50 кВт.

Топливные элементы на основе расплавленного карбоната (MCFC)

Топливные элементы данного типа функционируют при очень высоких температурах - 600-700 °C. Такие рабочие температуры позволяют использовать топливо непосредственно в самой ячейке, без использования отдельного реформера. Этот процесс получил название «внутренний реформинг». Он позволяет значительно упростить конструкцию топливного элемента.

Топливные элементы на основе расплавленного карбоната требуют значительного времени запуска и не позволяют оперативно регулировать выходную мощность, поэтому основная область их применения - крупные стационарные источники тепловой и электрической энергии. Однако они отличаются высокой эффективностью преобразования топлива - 60 % электрический КПД и до 85 % общий КПД.

В топливных элементах этого типа электролит состоит из солей карбоната калия и карбоната лития, нагретых примерно до 650 °C. В этих условиях соли находятся в расплавленном состоянии, образуя электролит. На аноде водород взаимодействует с ионами CO 3 , образуя воду, диоксид углерода и высвобождая электроны, которые направляются во внешнюю цепь, а на катоде кислород взаимодействует с диоксидом углерода и электронами из внешней цепи, вновь образуя ионы CO 3 .

Лабораторные образцы топливных элементов этого типа создали в конце 1950-х годов голландские ученые G. H. J. Broers и J. A. A. Ketelaar. В 1960-х годах с этими элементами работал инженер Френсис Бэкон (Francis T. Bacon), потомок известного английского писателя и ученого XVII века, поэтому иногда топливные элементы MCFC называют элементами Бэкона. В программах НАСА «Apollo», «Apollo-Soyuz» и «Scylab» в качестве источника энергоснабжения использовались именно такие топливные элементы (рис. 14). В эти же годы военное ведомство США испытывало несколько образцов топливных элементов MCFC производства «Texas Instruments», в которых в качестве топлива использовались армейские сорта бензина. В середине 1970-х годов Министерство энергетики США начало исследования, целью которых было создание стационарного топливного элемента на основе расплавленного карбоната, пригодного для практического применения. В 1990-х годах был введен в действие ряд коммерческих установок номинальной мощностью до 250 кВт, например, на авиабазе ВМФ США «Miramar» в Калифорнии. В 1996 году компания «FuelCell Energy, Inc.» запустила в опытную эксплуатацию предсерийную установку номинальной мощностью 2 МВт в Санта-Кларе, Калифорния.

Твердотельные оксидные топливные элементы (SOFC)

Твердотельные оксидные топливные элементы отличаются простотой конструкции и функционируют при очень высоких температурах - 700-1 000 °C. Такие высокие температуры позволяют использовать относительно «грязное», неочищенное топливо. Такие же особенности, как и у топливных элементов на основе расплавленного карбоната, определяют и сходную область применения - крупные стационарные источники тепловой и электрической энергии.

Твердотельные оксидные топливные элементы конструктивно отличаются от топливных элементов на основе технологий PAFC и MCFC. Анод, катод и электролит изготовлены из специальных сортов керамики. Наиболее часто в качестве электролита используются смесь оксида циркония и оксида кальция, но могут использоваться и другие оксиды. Электролит образует кристаллическую решетку, покрытую с обеих сторон пористым электродным материалом. Конструктивно такие элементы выполняются в виде трубок или плоских плат, что позволяет при их изготовлении использовать технологии, широко применяемые в электронной промышленности. В результате твердотельные оксидные топливные элементы могут работать при очень высоких температурах, поэтому их выгодно использовать для производства и электрической, и тепловой энергии.

При высоких рабочих температурах на катоде образуются ионы кислорода, которые мигрируют через кристаллическую решетку на анод, где взаимодействуют с ионами водорода, образуя воду и высвобождая свободные электроны. При этом водород выделяется из природного газа непосредственно в ячейке, т. е. нет необходимости в отдельном реформере.

Теоретические основы создания твердотельных оксидных топливных элементов были заложены еще в конце 1930-х годов, когда швейцарские ученые Бауэр (Emil Bauer) и Прейс (H. Preis) экспериментировали с цирконием, иттрием, церием, лантаном и вольфрамом, используя их в качестве электролитов.

Первые опытные образцы таких топливных элементов были созданы в конце 1950-х годов рядом американских и голландских компаний. Большинство этих компаний вскоре отказались от дальнейших исследований из-за технологических трудностей, однако одна из них, «Westinghouse Electric Corp.» (сейчас «Siemens Westinghouse Power Corporation»), продолжила работы. В настоящее время эта компания принимает предварительные заказы на коммерческую модель твердотельного оксидного топливного элемента трубчатой топологии, появление которой ожидается в этом году (рис. 15). Рыночный сегмент таких элементов - стационарные установки для производства тепловой и электрической энергии мощностью от 250 кВт до 5 МВт.

Топливные элементы типа SOFC продемонстрировали очень высокую надежность. Например, прототип топливного элемента производства «Siemens Westinghouse» наработал 16 600 часов и продолжает работать, что стало самым длительным непрерывным сроком эксплуатации топливного элемента в мире.

Режим работы топливных элементов типа SOFC, с высокой температурой и высоким давлением, позволяет создавать гибридные установки, в которых выбросы топливных элементов вращают газовые турбины, используемые для выработки электрической энергии. Первая такая гибридная установка работает в Ирвайне, Калифорния. Номинальная мощность этой установки - 220 кВт, из них 200 кВт от топливного элемента и 20 кВт от микротурбинного генератора.

Сэр Уильям Грове знал много об электролизе, поэтому он выдвинул гипотезу, что путем процесса (который расщепляет воду на составляющие водород и кислород путем проведения электричества через нее) он может производить , если провести его в обратном порядке. После расчётов на бумаге, он подошел к экспериментальной стадии и сумел доказать свои идеи. Доказанную гипотезу развили ученые Людвиг Монд и его помощник Чарльз Лангре, усовершенствовали технологию и еще в 1889 году дали ей название в которые входили два слова- "топливный элемент".

Сейчас это словосочетание крепко вошло в обиход автомобилистов. Вы безусловно слышали этот термин «топливный элемент» и не единожды. В новостях в интернете, по телевизору все чаще мелькают новомодные слова. Обычно они относятся к рассказам о новейших гибридных автомобилях или программах развития этих гибридных автомобилей.

Например, еще 11 лет назад в США была запущена программа "The Hydrogen Fuel Initiative". Программа была направлена ​​на разработку водородных топливных элементов и технологий инфраструктуры, необходимых для того, чтобы сделать транспортные средства использующие топливные элементы практичными и экономически продуманными, рентабельными к 2020 году. Кстати, за это время на программу было выделено более 1 млрд. долларов, что говорит о серьезной ставке, которую сделали власти Штатов на .

По другую сторону океана производители автомобилей также не дремали, начинали или продолжали проводить свои изыскания на тему машин с топливными элементами. , и даже продолжал работать над созданием надежной технологии топливных элементов.

Наибольшего успеха на данном поприще среди всех мировых автопроизводителей добились две японских автопроизводителя, и . Их модели на топливных элементах уже пошли в серийное производство, в тоже время их конкуренты следует прямо за ними.

Поэтому, топливные элементы в автомобильной индустрии- это надолго. Рассмотрим принципы работы технологии и ее применение в современных автомобилях.

Принцип работы топливного элемента


В сущности, . С технической точки зрения определить топливный элемент можно как электрохимическое устройство для преобразования энергии. Он преобразует частицы водорода и кислорода в воду, в процессе попутно производя электричество, постоянный ток.

Существует множество типов топливных элементов, некоторые из них уже используются в автомобилях, другие проходят исследовательские тесты. В большинстве из них используется водород и кислород в качестве основных химических элементов необходимых для преобразования.

Аналогичная процедура происходит в обычной батарее, отличие только в том, что уже имеет все необходимые химические вещества, требуемые для преобразования "на борту", в то время как топливный элемент может быть "заряжаться" от внешнего источника, благодаря чему процесс «производства» электричества может быть продолжен. Помимо водяного пара и электричества, другим побочным продуктом процедуры является выделяемое тепло.


Водородно-кислородный топливный элемент с протонообменной мембраной содержит протонопроводящую полимерную мембрану, которая разделяет два электрода — анод и катод. Каждый электрод обычно представляет собой угольную пластину (матрицу) с нанесённым катализатором — платиной или сплавом платиноидов и др. композиции.

На катализаторе анода молекулярный водород диссоциирует и теряет электроны. Катионы водорода проводятся через мембрану к катоду, но электроны отдаются во внешнюю цепь, так как мембрана не пропускает электроны.

На катализаторе катода молекула кислорода соединяется с электроном (который подводится из внешних коммуникаций) и пришедшим протоном и образует воду, которая является единственным продуктом реакции (в виде пара и/или жидкости).

wikipedia.org

Применение в автомобилях

Из всех типов топливных элементов, по- видимому наилучшим кандидатом для применения в транспортных средствах стали топливные элементы на основе протонообменных мембран или как их называют на западе- Polymer Exchange Membrane Fuel Cell (PEMFC). Основными причинами этого являются его высокая удельная мощность и относительно низкая рабочая температура, а это в свою очередь означает, что у него не потребуется много времени для того чтобы привести топливные элементы в рабочий режим. Они оперативно разогреются и начнут производить необходимое количество электроэнергии. В ее основе используется также одна из самых простых реакций из всех типов топливных элементов.

Первое транспортное средство с этой технологией было сделано еще в 1994 году, когда Mercedes-Benz представил MB100 созданный на основе NECAR1 (новый электрический автомобиль 1). Помимо малой выходной мощности (всего 50 киловатт), самый большой недостаток этой концепции заключалась в том, что топливный элемент занимал весь объем грузового отсека фургона.


Кроме того, с точки зрения пассивной безопасности, это была ужасная идея для массового производства, принимая во внимание необходимость установки на борту массивного резервуара, заполненного легковоспламеняющимся водородом под давлением.

В течение следующего десятилетия технология развивалась и одна из последних концепций, созданных на топливных элементах от Мерседес имел выходную мощность 115 л.с. (85 квт) и диапазон действия около 400 километров перед дозаправкой. Конечно, немцы были не единственными пионерами в разработке топливных элементов будущего. Не забывайте про двух японцев, Toyota и . Одним из крупнейших автомобильных игроков стала Honda, который представил серийный автомобиль с силовой установкой на водородных топливных элементах. Продажи FCX Clarity в лизинг на территории США начались летом 2008 года, чуть позже реализация автомобиля перешла в Японию.

Еще дальше пошла Toyota с моделью Mirai, чья прогрессивная система топливных элементов, работающая на водороде, по- видимому способна предоставить футуристичному автомобилю диапазон действия в 520 км на одном баке, который может быть заправляемого менее чем за пять минут, так же как обычный . Показатели расхода топлива поразят любого скептика, они невероятны даже для автомобиля с классической силовой установкой расходует 3.5 литра независимо от того в каких условиях используется автомобиль, в городе, на шоссе или в смешанном цикле.

Прошло восемь лет. Honda потратила это время с пользой для своего дела. Второе поколение Honda FCX Clarity сейчас появляется в продаже. Ее батареи топливных элементов стали на 33% более компактными, чем у первой модели, удельная мощность увеличилась на 60%. Honda уверяет, что топливный элемент и интегрированный силовой агрегат в Clarity Fuel Cell по размерам сравним с двигателем V6, что оставляет достаточно внутреннего пространства для пяти пассажиров и их багажа.


Предполагаемый диапазон составляет 500 км, а стартовая цена новинки должна закрепиться на уровне в $60,000. Дорого? Наоборот, очень даже дешево. В начале 2000 автомобили с подобными технологиями стоили $100.000.