Высота пирамиды. Как ее найти? Объём пирамиды

Пирамида - это многогранник, в основании которого лежит многоугольник. Все грани в свою очередь образуют треугольники, которые сходятся в одной вершине. Пирамиды бывают треугольными, четырехугольными и так далее. Для того чтобы определить, какая пирамида перед вами, достаточно посчитать количество углов в ее основании. Определение "высота пирамиды" очень часто встречается в задачах по геометрии в школьной программе. В статье попробуем рассмотреть разные способы ее нахождения.

Части пирамиды

Каждая пирамида состоит из следующих элементов:

  • боковые грани, которые имеют по три угла и сходятся в вершине;
  • апофема представляет собой высоту, которая опускается из ее вершины;
  • вершина пирамиды - это точка, которая соединяет боковые ребра, но при этом не лежит в плоскости основания;
  • основание - это многоугольник, на котором не лежит вершина;
  • высота пирамиды представляет собой отрезок, который пересекает вершину пирамиды и образует с ее основанием прямой угол.

Как найти высоту пирамиды, если известен ее объем

Через формулу V = (S*h)/3 (в формуле V - объем, S - площадь основания, h - высота пирамиды) находим, что h = (3*V)/S. Для закрепления материала давайте сразу же решим задачу. В треугольной основания равна 50 см 2 , тогда как ее объем составляет 125 см 3 . Неизвестна высота треугольной пирамиды, которую нам и необходимо найти. Здесь все просто: вставляем данные в нашу формулу. Получаем h = (3*125)/50 = 7,5 см.

Как найти высоту пирамиды, если известна длина диагонали и ее ребра

Как мы помним, высота пирамиды образует с ее основанием прямой угол. А это значит что высота, ребро и половина диагонали вместе образуют Многие, конечно же, помнят теорему Пифагора. Зная два измерения, третью величину найти будет несложно. Вспомним известную теорему a² = b² + c², где а - гипотенуза, а в нашем случае ребро пирамиды; b - первый катет или половина диагонали и с - соответственно, второй катет, или высота пирамиды. Из этой формулы c² = a² - b².

Теперь задачка: в правильной пирамиде диагональ равна 20 см, когда как длина ребра - 30 см. Необходимо найти высоту. Решаем: c² = 30² - 20² = 900-400 = 500. Отсюда с = √ 500 = около 22,4.

Как найти высоту усеченной пирамиды

Она представляет собой многоугольник, который имеет сечение параллельно ее основанию. Высота усеченной пирамиды - это отрезок, который соединяет два ее основания. Высоту можно найти у правильной пирамиды, если будут известны длины диагоналей обоих оснований, а также ребро пирамиды. Пусть диагональ большего основания равна d1, в то время как диагональ меньшего основания - d2, а ребро имеет длину - l. Чтобы найти высоту, можно с двух верхних противоположных точек диаграммы опустить высоты на ее основание. Мы видим, что у нас получились два прямоугольных треугольника, остается найти длины их катетов. Для этого из большей диагонали вычитаем меньшую и делим на 2. Так мы найдем один катет: а = (d1-d2)/2. После чего по теореме Пифагора нам остается лишь найти второй катет, который и является высотой пирамиды.

Теперь рассмотрим все это дело на практике. Перед нами задача. Усеченная пирамида имеет в основании квадрат, длина диагонали большего основания равняется 10 см, в то время как меньшего - 6 см, а ребро равняется 4 см. Требуется найти высоту. Для начала находим один катет: а = (10-6)/2 = 2 см. Один катет равен 2 см, а гипотенуза - 4 см. Получается, что второй катет или высота будет равна 16-4 = 12, то есть h = √12 = около 3,5 см.

Слово «пирамида» невольно ассоциируется с величественными великанами в Египте, верно хранящими покой фараонов. Может быть поэтому пирамиду как безошибочно узнают все, даже дети.

Тем не менее, попробуем дать ей геометрическое определение. Представим на плоскости несколько точек (А1,А2,..., Ап) и еще одну (Е), не принадлежайшую ей. Так вот, если точку Е (вершину) соединить с вершинами многоугольника, образованного точками А1,А2,..., Ап (основание), получится многогранник, который и называют пирамидой. Очевидно, что вершин у многоугольника в основании пирамиды может быть сколько угодно, и в зависимости от их количества пирамиду можно назвать треугольной и четырехугольной, пятиугольной и т.д.

Если внимательно присмотреться к пирамиде, то станет ясно, почему ее определяют еще и по-другому - как геометрическую фигуру, имеющую в основании многоугольник, а в качестве боковых граней - треугольники, объединенные общей вершиной.

Поскольку пирамида - пространственная фигура, то и у нее есть такая количественная характеристика, как вычисляют по хорошо известной равного трети произведения основания пирамиды на ее высоту:

Объем пирамиды при выводе формулы первоначально рассчитывается для треугольной, взяв за основу постоянное соотношение, связывающее эту величину с объемом треугольной призмы, имеющей то же основание и высоту, которая, как оказывается, в три раза превышает этот объем.

А поскольку любая пирамида разбивается на треугольные, и ее объем не зависит от выполняемых при доказательстве построений, правомерность приведенной формулы объема - очевидна.

Особняком среди всех пирамид стоят правильные, у которых в основании лежит Что же касается , то она должна «оканчиваться» в центре основания.

В случае неправильного многоугольника в основании для вычисления площади основания потребуется:

  • разбить его на треугольники и квадраты;
  • подсчитать площадь каждого из них;
  • сложить полученные данные.

В случае правильного многоугольника в основании пирамиды, его площадь рассчитывают по готовым формулам, поэтому объем правильной пирамиды вычисляется совсем просто.

Например, чтобы вычислить объем четырехугольной пирамиды, если она правильная, возводят длину стороны правильного четырехугольника (квадрата) в основании в квадрат и, умножив на высоту пирамиды, делят полученное произведение на три.

Объем пирамиды можно вычислить, используя и другие параметры:

  • как треть произведения радиуса шара, вписанного в пирамиду, на площадь ее полной поверхности;
  • как две трети произведения расстояния между двумя произвольно взятыми скрещивающимися ребрами и площади параллелограмма, который образуют середины оставшихся четырех ребер.

Объем пирамиды вычисляется просто и в случае, когда его высота совпадает с одним из боковых ребер, то есть в случае прямоугольной пирамиды.

Говоря о пирамидах, нельзя обойти вниманием также усеченные пирамиды, полученные сечением пирамиды параллельной основанию плоскостью. Их объем практически равен разности объемов целой пирамиды и отсеченной вершины.

Первым объем пирамиды, правда не совсем в его современном виде, однако равным 1/3 объема известной нам призмы, нашел Демокрит. Его метод подсчета Архимед назвал «без доказательства», поскольку Демокрит подходил к пирамиде, как к фигуре, сложенной из бесконечно тонких, подобных пластинок.

К вопросу нахождения объема пирамиды «обратилась» и векторная алгебра, используя для этого координаты ее вершин. Пирамида, построенная на тройке векторов a,b,c, равна одной шестой от модуля смешанного произведения заданных векторов.

Теорема.

Объем пирамиды равен одной трети произведения площади основания на высоту .

Доказательство:

Сначала докажем теорему для треугольной пирамиды, затем для произвольной.

1. Рассмотрим треугольную пирамиду ОАВС с объемом V, площадью основания S и высотой h . Проведем ось ох (ОМ2 - высота), рассмотрим сечение А1 В1 С1 пирамиды плоскостью, пер­пендикулярной к оси ох и, значит, параллельной плоскости основания. Обозначим через х абсциссу точки М 1 пересечения этой плоскости с осью ох, а через S{ x) - площадь сечения. Выразим S(x) через S , h и х . Заметим, что треугольники А 1 В 1 С 1 и АВС подобны. В самом деле А 1 В 1 II AB, поэтому треугольник ОА 1 В 1 подобен треугольнику ОАВ. С ледовательно, А 1 В 1 : А В= ОА 1: ОА .

Прямоугольные треугольники ОА 1 В 1 и ОАВ тоже подобны (они име­ют общий острый угол с вершиной О) . Поэтому , ОА 1: ОА = О 1 М 1 : ОМ = х: h . Таким образом А 1 В 1 : А В = х: h. Аналогично доказывается, что В1 С1: ВС = х: h и А1 С1: АС = х: h. Итак, треугольник А1 В1 С1 и АВС подобны с коэффициентом подобия х: h. Следовательно, S(x) : S = (х: h) ², или S(x) = S х ²/ h ².

Применим теперь основную формулу для вычисления объемов тел при a = 0, b = h получаем


2. Докажем теперь теорему для произвольной пирамиды с высотой h и площадью основания S . Такую пирамиду можно разбить на треугольные пи­рамиды с общей высотой h. Выразим объем каждой треугольной пирамиды по доказанной нами формуле и сложим эти объемы. Вынося за скобки общий множитель 1/3h, получим в скобках сумму оснований треугольных пирамид, т.е. площадь S оснований исходной пирамиды.

Таким образом, объем исходной пирамиды равен 1/3Sh . Теорема доказана.

Следствие:

Объем V усеченной пирамиды, высота которой равна h, а площади основания равны S и S 1 , вычисляются по формуле

h - высота пирамиды

S верх. - площадь верхнего основания

S ниж. - площадь нижнего основания

h - высота пирамиды

S - площадь основания ABCDE

V - объем пирамиды

В геометрии пирамидой называют тело, которое имеет в основании многоугольник, а все его грани представляют собой треугольники с общей вершиной. В зависимости от того, какая именно фигура лежит в основании, пирамиды подразделяются на треугольные, четырехугольные, пятиугольные и т.д. Кроме того, различают правильные, усеченные, прямоугольные и произвольные пирамиды. Формула для вычисления объема этого тела не отличается сложностью и всем известна из школьного курса геометрии.

Классическим примером использования пирамид в архитектуре являются египетские гробницы фараонов, многие из которых имеют именно такую форму. Следует заметить, что аналогичные сооружения (хотя и несколько видоизмененные) встречаются и в других частях света и странах, например, в Мексике и Китае, причем характерно, что практически везде являются или усыпальницами, или культовыми сооружениями. Конечно, при их проектировании древние архитекторы вряд ли стремились определить объем своих детищ, а вот их «последователям» делать это наверняка приходится.

Современные зодчие также порой создают пирамидальные здания , в которых чаще всего располагаются объекты социально-культурного назначения (торгово-развлекательные комплексы, выставочные галереи и т.п.), и при этом рассчитывать объем этих сооружений необходимо для того, чтобы они соответствовали принятым строительным нормам, правилам и нормативам. Кроме того, точное значение этой величины требуется для того, чтобы наиболее рационально разместить в строении инженерные коммуникации.

В последние годы все большую популярность завоевывают теплицы, имеющие форму пирамиды . Чаще всего они возводятся из прозрачного поликарбоната и, как утверждают их разработчики, имеют существенные преимущества перед традиционными. Поскольку при одной и той же общей площади основания объем содержащегося в них воздуха примерно в три раза меньше, то и нагревается он существенно быстрее. К тому же, распределяется он более рационально, поскольку пространства для самого теплого газа, скапливающегося вверху, в пирамидальной теплице также меньше.

Пирамиды часто можно встретить и в обычных квартирах, загородных домах и коттеджах. Их форму нередко имеют раструбы кухонных вытяжек, использующихся для эффективного отвода из помещений горячего воздуха, дыма и гари. В виде усеченных пирамид часто изготавливаются те элементы вентиляционных систем, которые применяются для сочленения воздуховодов, обладающих различным сечением.

Одной из самых популярных головоломок является так называемая «пирамидка Мефферта », которую нередко называют «тетраэдром Рубика », хотя венгерский архитектор и изобретатель не имеет к ней никакого отношения. Каждая из ее граней разделена на девять разноцветных правильных треугольников, и цель играющего состоит в том, чтобы привести игрушку в такой вид, чтобы на каждой отдельной грани все ее элементы имели одинаковый цвет.

Прямоугольной называется пирамида, одно из ребер которой перпендикулярно ее основанию, то есть стоит под углом 90˚. Это ребро является одновременно и высотой прямоугольной пирамиды. Формулу объема пирамиды впервые вывел Архимед.

Вам понадобится

  • - ручка;
  • - бумага;
  • - калькулятор.

Инструкция

  • В прямоугольной пирамиде высотой будет ее ребро, которое стоит под углом 90˚ к основанию. Как правило, площадь основания прямоугольной пирамиды обозначают как S, а высоту, которая одновременно является ребром пирамиды, − h. Тогда, чтобы найти объем этой пирамиды, необходимо площадь ее основания умножить на высоту и разделить на 3. Таким образом, объем прямоугольной пирамиды вычисляется с помощью формулы: V=(S*h)/3.
  • Прочитайте условие задачи. Допустим, дана прямоугольная пирамида ABCDES. В ее основании лежит пятиугольник, площадь которого 45 см². Длина высоты SE равна 30 см.

  • Постройте пирамиду, следуя заданным параметрам. Ее основание обозначьте латинскими буквами ABCDE, а вершину пирамиды - S. Так как чертеж получится на плоскости в проекции, то для того, чтобы не запутаться, обозначьте уже известные вам данные: SE=30см; S(ABCDE)=45 см².
  • Вычислите объем прямоугольной пирамиды, используя формулу. Подставив данные и сделав подсчеты, получится, что объем прямоугольной пирамиды будет равен: V=(45*30)/3=см³.
  • Если в условии задачи нет данных о площади основания и высоте пирамиды, то нужно провести дополнительные вычисления для получения этих величин. Площадь основания будет вычисляться в зависимости от того, какой многоугольник лежит в ее основании.
  • Высоту пирамиды узнаете, если известна гипотенуза любого из прямоугольных треугольников EDS или EAS и угол, под которым наклонена боковая грань SD или SA к ее основанию. Вычислите катет SE по теореме синусов. Он и будет являться высотой прямоугольной пирамиды.