В чем определяется плотность. В чем измеряется плотность

Зависит не только от его размеров, но и от вещества, из которого тело состоит. Так, тела одного объёма, сделанные из разных веществ, имеют разные массы, и обратно: тела, имеющие одинаковые массы, сделанные из разных веществ, имеют разные объёмы.

Плотность тела - зависимость массы и объема

Например, железный куб с ребром 10 см имеет массу 7,8 кг, алюминиевый куб тех же размеров имеет массу 2,7 кг, а масса такого же куба изо льда 0,9 кг. Величина, характеризующая массу, приходящуюся на единичный объём данного вещества, называется плотностью. Плотность равна частному от массы тела и его объёма, т.е.

ρ = m/V, где ρ (читается «ро») плотность тела, m - его масса, V объём.

В Международной системе единиц СИ плотность измеряется в килограммах на кубический метр (кг/м3); также часто используются внесистемные единицы, например, грамм на кубический сантиметр (г/см3). Очевидно, 1 кг/м3 = 0,001 г/см3. Заметим, что при нагревании веществ их плотность уменьшается или (реже) увеличивается, но это изменение так незначительно, что при расчётах им пренебрегают.

Сделаем оговорку, что плотность газов непостоянна; когда говорится о плотности какого-нибудь газа, обычно имеется ввиду его плотность при 0 градусов по Цельсию и нормальном атмосферном давлении (760 миллиметров ртутного столба).

Расчет массы и объема тела

В повседневной жизни мы часто сталкиваемся с необходимостью рассчитывать массы и объёмы разных тел. Это удобно делать, применяя плотность.

Плотности разных веществ определяются по таблицам, например, плотность воды 1000 кг/м3, плотность этилового спирта 800 кг/м3.

Из определения плотности следует, что масса тела равна произведению его плотности и объёма. Объём же тела равен частному от массы и плотности. Этим пользуются при расчётах:

m = ρ * V; или V = m / p;

гдн m масса данного тела, ρ его плотность, V объём тела.

Рассмотрим пример такого расчета

Пустой стакан имеет массу m1=200 г. Если налить в него воды, его масса будет m2= 400 г. Какую массу будет иметь этот стакан, если налить столько же (по объёму) ртути?

Решение. Найдём массу налитой воды. Она будет равна разности массы стакана с водой и массы пустого стакана:

mводы = m2- m1 = 400 г 200 г = 200 г.

Найдём объём этой воды:

V = m / ρв = 200 г / 1 г/см3 = 200 см3 (рв плотность воды).

Найдём массу ртути в этом объёме:

mрт = ρртV = 13,6 г/см3 * * 200 см3 = 2720 г.

Найдём искомую массу:

m = mрт + m1 = 2720 г + 200 г = 2920 г.

Ответ: масса стакана с ртутью равна 2920 граммам.

Рассмотрим более сложный пример расчета

Слиток из двух металлов с плотностями ρ1 и ρ2 , имеет массу m и объём V. Определить объём этих металлов в слитке.

Решение. Пусть V1 объём первого металла, V2 объём второго металла. Тогда V1 + V2 = V; V1 = V V2; ρ1V1 + p2V2 = ρ1V1 + ρ2 (V V1) = m

Чтобы понять, каким образом и в чем измеряется плотность, прежде всего, необходимо дать определение слову плотность.Плотность вещества — это физическая величина, определяемая для однородного вещества массой его единичного объёма. Иными словами плотность это отношение массы вещества к его объёму.

Существует два основных метода определения плотности вещества — это прямой метод и косвенный. К косвенному методу относится математический расчёт плотности вещества по формуле, ρ = m / V , где ρ — плотность, m - масса вещества, V — объём вещества.
Возникает вопрос, а в каких единицах измеряется плотность? Это зависит от того, какое количество вещества было принято за массу и для какого единичного объёма.Например, если наполнить ёмкость объёмом 1л водой, затем взвесить эту ёмкость вместе с водой и от полученной массы отнять массу ёмкости — получим массу воды. Допустим полученное значение массы воды равно 1кг. После чего, зная массу и объём воды, математически (косвенным методом) можно рассчитать плотность воды, поделив массу воды (1 кг) на объём (1л). Полученное значение 1 кг/л и есть плотность воды, где кг/л — то, в чем измеряется плотность.

Для прямого измерения плотности жидкости используются такие средства измерения, как ареометры или электронные плотномеры , как у компании - производителя плотномеров LEMIS Baltic. Данные средства измерения будут выдавать значения плотности измеряемой жидкости в г/см3 и в кг/м3 — это то, в каких единицах измеряется плотность по стандарту в системе СИ.

Т.е. однозначного ответа в чем измеряется плотность нет. Самые часто используемые величины были указаны ранее. Но также могут быть использованы и другие. Например, если в стране используется не метрическая система измерения, то единицы измерения плотности совершенно другие.

В химических лабораториях очень часто приходится определять плотность. В литературе -прежних лет и в справочниках старых изданий приводятся таблицы удельных весов растворов и твердых тел. Этой величиной пользовались вместо плотности, являющейся одной из важнейших физических величин, которыми характеризуют свойства вещества.

Плотностью вещества называют отношение массы тела к его объему:

Следовательно, плотность вещества выражают * в г/см3. Удельным весом у называют отношение веса (силы тяжести) вещества к объему:

Плотность и удельный вес вещества находятся в такой же зависимости между собой, как масса и вес, т. е.

где g - местное значение ускорения силы тяжести при свободном падении. Таким образом, размерность удельного веса "(г/см2 сек2) и плотности (г/см3), а также их числовые значения, выраженные в одной системе единиц, отличаются друг от друга *.

Плотность тела не зависит от его местонахождения на Земле, в то время как удельный вес изменяется в зависимости от того, в каком месте Земли его измерить.

В ряде случаев предпочитают пользоваться так называемой относительной плотностью, представляющей собой отношение плотности данного вещества к плотности другого вещества при определенных условиях. Относительная плотность выражается отвлеченным числом.

Относительную плотность d жидких и твердых веществ принято определять по отношению к плотности дистиллированной воды:


Само собой разумеется, что р и рв должны выражаться одинаковыми единицами.

Относительную плотность d можно также выражать отношением массы взятого вещества к массе дистиллированной воды, взятой в том же объеме, что и вещество, при определенных, постоянных условиях.

Поскольку числовые значения как относительной плотности, так и относительного удельного веса при указанных постоянных условиях являются одинаковыми, пользоваться таблицами относительных удельных весов в справочниках можно так же, как если бы это были таблицы плотности.

Относительная плотность является постоянной величиной для каждого химически однородного вещества и для растворов при данной температуре. Поэтому по

* В ряде случаев плотность выражают в г/мл. Различие между числовыми значениями плотности, выраженными в г/см3 и г/мл, очень незначительно. Его следует принимать во внимание лишь при работах особой точности.

Поэтому по величине относительной плотности во многих случаях можно судить о концентрации вещества в растворе.

* В технической системе единиц (MKXCC). в которой за основную единицу принята не единица массы, а единица силы - килограмм-сила (кГ или кгс), удельный вес выражается в кГ/м3 или Г/см3. Следует отметить, что числовые значения удельного веси, измеренного в Г/см3, и плотности, измеренной в г/см3, совпадают, что нередко вызывает путаницу в понятиях «плотность» и «удельный вес».

Обычно плотность раствора увеличивается с увеличением концентрации растворенного вещества (если оно само имеет плотность больше, чем растворитель). Но имеются вещества, для которых увеличение плотности с увеличением концентрации идет только до известного предела, после которого при увеличении концентрации происходит уменьшение плотности.

Например, серная кислота имеет наивысшую плотность, равную 1,8415 при концентрации 97,35%. Дальнейшее увеличение концентрации сопровождается уменьшением плотности до 1,8315, что соответствует 99,31%.

Уксусная кислота имеет максимальную плотность при концентрации 77- 79%, а 100%-ная уксусная кислота имеет ту же плотность, что и 41%-ная.

Относительная плотность зависит от температуры, при которой ее определяют. Поэтому всегда указывают температуру, при которой делали определение, и температуру воды (объем взят за единицу). В справочниках это показывают при помощи соответствующих индексов, например eft; приведенное обозначение указывает, что относительная плотность определена при температуре 2O0C и за единицу для сравнения взята плотность воды при температуре 4е С. Встречаются также и другие индексы, обозначающие условия, при которых производилось определение относительной плотности, например Я4 Ul и т. д.

Изменение относительной плотности 90%-ной серной кислоты в зависимости от температуры окружающей среды приводится ниже:

Относительная плотность с повышением температуры уменьшается, с понижением ее -увеличивается.

При определении относительной плотности необходимо отмечать температуру, при которой оно проведено, и полученные величины сравнивать с табличными данны-, ми, определенными при той_же температуре.

Если измерение проведено не при той температуре, которая указана в справочнике, то. вводят поправку, вычисляемую как среднее изменение относительной плотпости на один градус. Например, если в интервале между 15 и 20 0C относительная плотность 90%-ной серной кислоты уменьшается на 1,8198-1,8144 = 0,0054, то в среднем можно принять, что при изменении температуры на 1 0С (выше 15 0C) относительная плотность уменьшается на 0,0054: 5 = 0,0011.

Таким образом, если определение вести при 18 0C, то относительная плотность указанного раствора должна быть равна:

Однако для введения температурной поправки к относительной плотности удобнее пользоваться приведенной ниже номограммой (рис. 488). Эта номограмма, кроме того, дает возможность но известной относительной плотности, вычисленной при стандартной температуре 20° С, приближенно определять относительную плотность при других температурах, в чем иногда может возникнуть потребность.Относительную плотность жидкостей можно определять при помощи ареометров, пикнометров, специальных весов и т. п.

Определение относительной плотности ареометрами.

Для быстрого определения относительной плотности жидкости применяют так называемые ареометры (рис. 489). Это-стеклянная трубка (рис. 489, а), расширяющаяся внизу и имеющая на конце стеклянный резервуар, заполненный дробью нли специальной массой, (реже - ртутью). В верхней узкой части ареометра имеется шкала с делениями. Чем меньше относительная плотность жидкости, тем глубже погружается в нее ареометр. Поэтому на его шкале вверху нанесено наименьшее значение относительной плотности, которое можно определить данным ареометром, внизу - наибольшее. Например, у ареометров для жидкостей с относительной плотностью меньше единицы внизу стоит 1,000, выше 0,990, еще выше 0,980 и т. д.

Промежутки между цифрами разделены на более мелкие деления, позволяющие определять относительную плотность с точностью до третьего десятичного знака. У наиболее точных ареометров шкала охватывает значения относительной плотности в пределах 0,2-0,4 единицы (например, Для определения плотности от 1,000 до 1,200, от 1,200 до 1,400 и т. д.). Такие ареометры обычно продают в виде наборов, которые дают возможность определять относительную плотность в широком интервале.

Номограмма для введения температурной поправки

Иногда ареометры снабжены термометрами (рис. 489,6), что позволяет одновременно измерять температуру, при которой проводится определение. Для определения относительной плотности при помощи ареометра жидкость наливают в стеклянный цилиндр (рис. 490) емкостью не менее 0,5 л, сходный по форме с мерным, но без носика и делений. Размер цилиндра должен соответствовать размеру ареометра. Наливать жидкость в цилиндр до краев не следует, так как при погружении ареометра жидкость может перелиться через край. Это бывает даже опасно при измерении плотности концентрированных кислот или концентрированных щелочей и пр. Поэтому уровень жидкости в цилиндре должен быть на несколько сантиметров ниже края цилиндра.

Иногда цилиндр для определения плотности имеет вверху желоб, расположенный концентрически, так что если жидкость при погружении ареометра перельется через край, то она не выльется на стол.

Для определения относительной плотности имеются специальные приборы, поддерживающие постоянный уровень жидкости в цилиндре. Схема одного из таких приборов приведена на рис. 491. Это - цилиндр 2, имеющий на определенной высоте отводную трубку 3 для стекания жидкости, вытесняемой ареометром при погружении его в жидкость. Вытесняемая жидкость поступает в трубку 4, имеющую кран 5, через который жидкость может быть слита. Цилиндр можно наполнять исследуемой жидкостью через уравнительную трубку /, имеющую в верхней части цилиндрическое расширение.

Все строительно-эксплуатационные свойства строительных материалов можно разделить на несколько групп. Перечислим их:

  • физические свойства;
  • теплофизические;
  • гидрофизические;
  • химические;
  • механические.

Поговорим прежде о том, что представляют собой основные физические свойства материалов.

Одним из важнейших физических свойств является, безусловно, плотность, которая бывает истинной и средней.

Истинная плотность определяется как отношение массы абсолютно плотного материала (т.е. материала, в котором нет никаких пустот, обычно присутствующих в его нормальном, естественном состоянии) к его объёму. Расчёт плотности материала (речь идёт, конечно, об истинной плотности) происходит по следующей формуле:

Где m – это масса материала (измеряется в граммах), Vа – его объём в абсолютно плотном состоянии (измеряется в см3), а ρ – истинная плотность (измеряется в г/см3) .

Значение истиной плотности показывает, насколько вещество, которое лежит в основе материала, тяжёлое либо лёгкое. Стоит заметить, что расчёт плотности материала в этом варианте носит лишь вспомогательный характер, для определения же её пользуются специальным прибором – объёмомером (другое его название – прибор Ле Шателье). Представляет он собой, по сути, мерный цилиндр, в который заливается вода либо любая другая жидкость, не вступающая в химическую реакцию с анализируемым материалом. Работает это так: в процессе исследования материал очень сильно измельчают, потом взвешивают и затем высыпают в прибор, получая при этом за счёт вытесненной жидкости данные об его объёме. А далее уже по вышеприведённой формуле непосредственно происходит расчёт плотности материала.

Истинная плотность строительных материалов может существенно различаться: так, для стали она равна 7,85 г/см3, для гранита – 2,9 г/см3, для древесины – 1,6 г/см3 (данная величина средняя и зависит от используемого материала).

Второй вид плотности (средняя плотность строительных материалов) представляет собой массу единицы объёма материала в его естественном виде (т.е. вместе с пустотами – порами и трещинами).

Как узнаётся средняя плотность? Формула для её определения такова:

где ρm – средняя плотность, m – масса материала, Ve – объём материала в естественном виде.

Объём материала определяют различными способами – зависит это от того, какая у образца либо изделия форма. Само значение средней плотности варьируется, опять же, в достаточно значительном диапазоне: от 10-20 кг/м3 (пенополистирол) до 2500 г/см3 (тяжёлый бетон). В принципе, существуют материалы и с большей средней плотностью.

Средняя плотность строительных материалов зависит от следующих факторов:

  • от пористости материала: если пористость равна нулю, то средняя плотность будет равняться истинной плотности, а если пористость увеличивается, средняя плотность снижается (обратная зависимость);
  • от влажности материала: средняя плотность тем выше, чем больше воды в строительном материале (исходя из этого расчет плотности материала происходит при полной его сухости).

Многие физические свойства строительных материалов (допустим, прочность, теплопроводность, водопоглощение) можно узнать, именно основываясь на значении их средней плотности.

Описывая основные физические свойства материалов , нельзя не упомянуть о пористости, которая показывает, насколько объём материала заполнен пустотами в виде пор и трещин. Рассчитать пористость строительных материалов можно с помощью следующей формулы:

где П – пористость (%), Vпор – объём пор в исследуемом материале, Ve – объём образца материала в естественном виде.

Также пористость строительных материалов рассчитывается и по другим формулам.

Пористость материалов, применяемых в строительстве, изменяется в довольно широких пределах. Так, к примеру, у стекла, полимеров и метала она равна 0%, у гранита – 0,2-0,8%, а у теплоизоляционных штукатурок пористость может достигать 75 %.

Различают открытую и закрытую пористость строительных материалов. Отличаются они между собой тем, что в первом случае поры открытые и сообщаются с окружающей средой, а во втором – закрытые. Как правило, в одном и том же материале присутствуют сразу два вида пор – и закрытые, и открытые. Пористость оказывает существенное влияние на некоторые эксплуатационные свойства строительных материалов : например, в звукопоглощающих материалах для улучшения поглощения звуков специально делают открытые поры и перфорируют поверхность.

Основные физические свойства материалов не исчерпываются плотностью и пористостью – существует ещё и такое понятие, как «пустотность» , которое применяют, говоря об изделиях, специально созданных с пустотами внутри (такие пустоты есть в керамическом кирпиче). Что касается определения, то значение пустотности характеризует степень заполнения объёма рассматриваемого изделия пустотами.

Рисунок 1. Таблица плотностей некоторых веществ. Автор24 - интернет-биржа студенческих работ

Все тела в окружающем нас мире имеют различные размеры и объемы. Но даже при одинаковых объемных данных масса веществ будет существенно отличаться. В физике такое явление называют плотностью вещества.

Плотность – это основное физическое понятие, дающее представление о характеристиках любого известного вещества.

Определение 1

Плотность вещества – физическая величина, которая показывает массу определенного вещества в единице объема.

Единицами объема в пересчете плотности вещества обычно являются кубический метр или кубический сантиметр. Определение плотности вещества осуществляется специальным оборудованием и приборами.

Для определения плотности вещества необходимо массу его тела поделить на собственный объем. При расчете плотности вещества используют следующие величины:

массу тела ($m$); объем тела ($V$); плотность тела ($ρ$)

Замечание 1

$ρ$ - это буква греческого алфавита "ро" и ее нельзя путать с похожим обозначением давления – $p$ («пэ»).

Формула плотности вещества

Расчет плотности вещества происходит с использования системы измерений СИ. В ней единицы плотности выражаются в килограммах на кубический метр или граммах на кубический сантиметр. Также можно использовать любую систему измерения.

У вещества бывают разные степени плотности, если оно находится в различных агрегатных состояниях. Иными словами, плотность вещества, находящегося в твердом состоянии, будет иным, чем плотность этого же вещества в жидком или газообразном состоянии. Например, для воды характерна плотность в обычном жидком состоянии 1000 килограммов на кубический метр. В замороженном состоянии вода (лед) будет иметь плотность уже 900 килограммов на кубический метр. Водяной пар при нормальном атмосферном давлении и температуре близкой к нулю градусов будет иметь плотность 590 килограммов на кубический метр.

Стандартная формула плотности вещества выглядит следующим образом:

Помимо стандартной формулы, которая используется только для твёрдых веществ, существует формула для газа в нормальных условиях:

$ρ = M / Vm$, где:

  • $M$ - молярная масса газа,
  • $Vm$ - молярный объём газа.

Существуют два вида твердых тел:

  • пористые;
  • сыпучие.

Замечание 2

Их физические характеристики напрямую влияют на показатели плотности вещества.

Плотность однородных тел

Определение 2

Плотностью однородных тел называют отношение массы тела к его объему.

В понятие плотности вещества вмещают определение плотности однородного и равномерно распределенного тела с неоднородной структурой, которое состоит из этого вещества. Это постоянная величина и для большего понимания информации формируют специальные таблицы, где собраны все распространенные вещества. Значения по каждому веществу разделены на три составляющие:

  • плотность тела в твердом состоянии;
  • плотность тела в жидком состоянии;
  • плотность тела в газообразном состоянии.

Вода достаточно однородное вещество. Некоторые вещества не столь однородны, поэтому для них определяют среднюю плотность тела. Для выведения этого значения необходимо знать результат ρ вещества по каждому компоненту в отдельности. Сыпучие и пористые тела обладают истинной плотностью. Она определяется без учета пустот в своей структуре. Удельную плотность можно рассчитать путём деления массы вещества на весь занимаемый им объём.

Подобные величины связаны между собой коэффициентом пористости. Он представляет собой отношение объёма пустот к общему объёму тела, которое в данный момент исследуется.

Плотность веществ зависит от многих дополнительных факторов. Ряд из них одновременно повышают для одних веществ эту величину, а для остальных - понижают. При низкой температуре происходит увеличение плотности вещества. Некоторые вещества способны реагировать на изменение температурного режима по-разному. В этом случае принято говорить, что плотность при определённом температурном диапазоне ведёт себя аномальным образом. К таким веществам часто относят бронзу, воду, чугун и некоторые другие сплавы. Плотность воды имеет наибольший показатель при 4 градусах по Цельсию. При дальнейшем нагреве или охлаждении этот показатель также существенно может изменяться.

Метаморфозы с плотностью воды происходят при переходе из одного агрегатного состояния в другое. Показатель ρ меняет в этих случаях свои значения скачкообразным образом. Он поступательно увеличивается при переходе в жидкость из газообразного состояния, а также в момент кристаллизации жидкости.

Существует, и немало, исключительных случаев. Например, кремний имеет при затвердевании небольшие значения по плотности.

Измерение плотности вещества

При эффективном измерении плотности вещества обычно используют специальное оборудование. Оно состоит из:

  • весов;
  • измерительного прибора в виде линейки;
  • мерной колбы.

Если исследуемое вещество находится в твердом состоянии, то в качестве измерительного прибора используют мерку в виде сантиметра. Если исследуемое вещество находится в жидком агрегатном состоянии, то при измерениях используют мерную колбу.

Сначала предстоит измерить объем тела при помощи сантиметра или мерной колбы. Исследователь наблюдает за шкалой измерений и фиксирует получившийся результат. Если исследуется деревянный брус кубической формы, то плотность будет равна значению стороны, возведенную в третью степень. При исследовании жидкости необходимо дополнительно учитывать массу сосуда, при помощи которого проводятся измерения. Полученные значения необходимо подставить в универсальную формулу по плотности вещества и рассчитать показатель.

Для газов расчет показателя происходит очень сложно, поскольку необходимо пользоваться различными измерительными приборами.

Обычно для расчета плотности веществ используют ареометр. Он предназначен для получения результатов у жидкостей. Истинную плотность изучают при помощи пикнометра. Почвы исследуют при помощи буров Качиньского и Зайдельмана.