Строение и функции сенсорной системы. Реферат: Сенсорные системы человека

Сенсорные системы

Определение понятия

Сенсорные системы

Сенсорные системы

Е О рные.

Итак,сенсорные системы

Виды сенсорных систем


1) Ноцицептивная (болевая).

гомеостаза

(сенсорного образа).

Строение анализатора

1. Периферическая часть

2. Проводниковый отдел

3. Центральный отдел

Понятие сенсорная система шире , чем анализатор.

Адаптация

Общие принципы устройства сенсорных систем

Отделы сенсорной системы:

1. Рецепторы. Возможны также вспомогательные структуры (например глазное яблоко, ухо и т.п.).
2. Афферентные (чувствительные) нервные пути (афферентные нейроны).
3. Низшие нервные центры.
4. Высший нервный центр в коре больших полушарий головного мозга.

Принцип многоэтажности.

В каждой сенсорной системе существует несколько передаточных промежуточных инстанций на пути от рецепторов к коре больших полушарий головного мозга. В этих промежуточных низших нервных центрах происходит частичная переработка возбуждения (информации). Уже на уровне низших нервных центров формируются безусловные рефлексы, т. е. ответные реакции на раздражение, они не требуют участия коры головного мозга и осуществляются очень быстро.

Например: Мошка летит прямо в глаз - глаз моргнул в ответ, и мошка в него не попала. Для ответной реакции в виде моргания не требуется создавать полноценный образ мошки, достаточно простой детекции того, что объект быстро приближается к глазу.

Одна из вершин многоэтажного устройства сенсорной системы - это слуховая сенсорная система. В ней можно насчитать 6 этажей. Существуют также дополнительные обходные пути к высшим корковым структурам, которые минуют несколько низших этажей. Таким способом кора получает предварительный сигнал для повышения её готовности до основного потока сенсорного возбуждения.

Принцип многоканальности.

Возбуждение передается от рецепторов в кору всегда по нескольким параллельным путям. Потоки возбуждения частично дублируются, и частично разделяются. По ним передается информация о различных свойствах раздражителя.

Пример параллельных путей зрительной системы:

1-й путь: сетчатка - таламус - зрительная кора.

2-й путь: сетчатка - четверохолмие (верхние холмы) среднего мозга (ядра глазодвигательных нервов).

3-й путь: сетчатка - таламус - подушка таламуса - теменная ассоциативная кора.

При повреждении разных путей и результаты получаются различные.

Например: если разрушить наружное коленчатое тело таламуса (НКТ) в зрительном пути 1, то наступает полная слепота; если разрушить верхнее двухолмие среднего мозга в пути 2, то нарушается восприятие движения предметов в поле зрения; если разрушить подушку таламуса в пути 3, то пропадает узнавание предметов и зрительное запоминание.

Во всех сенсорных системах обязательно существуют три пути (канала) передачи возбуждения:

1) специфический путь: он ведет в первичную сенсорную проекционную зону коры,

2) неспецифический путь: он обеспечивает общую активность и тонус коркового отдела анализатора,

3) ассоциативный путь: он определяет биологическую значимость раздражителя и управляет вниманием.

В эволюционном процессе усиливается многоэтажность и многоканальность в структуре сенсорных путей.

Иллюстрация принципа многоканальности: Пути сенсорного возбуждения

Принцип конвергенции.

Конвергенция - это схождение нервных путей в виде воронки. За счёт конвергенции нейрон верхнего уровня получает возбуждение от нескольких нейронов нижележащего уровня.

Например: в сетчатке глаза существует большая конвергенция. Фоторецепторов несколько десятков млн., а ганглиозных клеток - не более одного млн. Т.е. нервных волокон, передающих возбуждение от сетчатки во много раз меньше, чем фоторецепторов.

Принцип дивергенции.

Дивергенция - это расхождение потока возбуждения на несколько потоков от низшего этажа к высшему (напоминает расходящуюся воронку).

5. Принцип обратной связи. Обратная связь обычно означает влияние управляемого элемента на управляющий. Для этого существуют соответствующие пути возбуждения от низших и высших центров обратно к рецепторам

Общие принципы работы сенсорных систем:

1. Преобразование силы раздражения в частотный код импульсов – универсальный принцип действия любого сенсорного рецептора.

Причём во всех сенсорных рецепторах преобразование начинается с вызванного стимулом изменения свойств клеточной мембраны. Под действием стимула (раздражителя) в мембране клеточного рецептора должны открыться (а в фоторецепторах, наоборот, закрыться) стимул-управляемые ионные каналы. Через них начинается поток ионов и развивается состояние деполярицации мембраны.

2. Топическое соответствие - поток возбуждения (информационный поток) во всех передаточных структурах соответствует значимым характеристикам раздражителя. Это означает, что важные признаки раздражителя будут закодированы в виде потока нервных импульсов и нервной системой будет построен внутренний сенсорный образ, похожий на раздражитель - нервная модель стимула. "Топическое" - означает "пространственное".

3. Детекция - это выделение качественных признаков. Нейроны-детекторы реагируют на определенные признаки объекта и не реагируют на все остальное. Нейроны-детекторы отмечают контрастные переходы. Детекторы придают сложному сигналу осмысленность и уникальность. В разных сигналах они выделяют одинаковые параметры. К примеру, только детекция поможет вам отделить контуры маскирующейся камбалы от окружающего её фона.

4. Искажение информации об исходном объекте на каждом уровне передачи возбуждения.

5. Специфичность рецепторов и органов чувств. Их чувствительность максимальна к определенному типу раздражителя с определенной интенсивностью.

6. Закон специфичности сенсорных энергий: ощущение определяется не стимулом, а раздражаемым сенсорным органом. Ещё точнее можно сказать так: ощущение определяется не раздражителем, а тем сенсорным образом, который строится в высших нервных центрах в ответ на действие раздражителя. Например, источник болевого раздражения может находиться в одном месте тела, а ощущение боли может проецироваться на совсем другой участок. Или же: один и тот же раздражитель может вызывать очень разные ощущения в зависимости от адаптации к нему нервной системы и/или органа чувств.

7. Обратная связь между последующими и предшествующими структурами. Последующие структуры могут менять состояние предшествующих и менять таким способом характеристики приходящего к ним потока возбуждения.

Адекватный раздражитель – это раздражитель, дающий максимальную ответную реакцию, при минимальной силе раздражения.

Специфичность сенсорных систем предопределяется их структурой. Структура ограничивает их реакции на один раздражитель и способствует восприятию других.

Общее представление

Физиология зрения

Зрение обеспечивается зрительной сенсорной системой, или зрительным анализатором, по И.П. Павлову.

Зрительное восприятие – это построение нервной модели светового раздражения за счёт возбуждения и торможения фоторецепторов сетчатки глаза. Модель строится из нейронов в зрительной зоне коры головного мозга на основе того зрительного возбуждения, которое производит сетчатка глаза при раздражении её светом.

Эта нервная модель представляет собой субъективный зрительный образ, который в своих важнейших деталях совпадает с реальным световым раздражением. Однако несомненно, что этот образ имеет большие искажения по сравнению с реальностью, но мы этого просто не замечаем. Думаете, изображение, находящееся ниже, шевелится? Нет! Это шевелятся ваши глаза...

А в результате - шевелится субъективный образ изображения, которое в реальности неподвижно. Известно множество зрительных иллюзий, основанных на субъективных искажениях реального изображения.

Физиология слуха

Слуховая сенсорная система обеспечивает восприятие звуков и построение слуховых образов , т.е. слух . Адекватным раздражителем для неё является звук . Это означает, что именно к звукам слуховая сенсорная система имеет повышенную чувствительность и восприимчивость, а также создаёт такие сенсорные образы, которые правильно отражают важные характеристики звуковых раздражителей и позволяют ориентироваться в звуковых сигналах.

Для понимания физиологии слуха нам потребуется объяснить возникновение слухового сенсорного потока возбуждения, его движение по нервной системе и, наконец, формирование слухового сенсорного образа.

План объяснения слухового восприятия:

1. Раздражитель.

2. Проведение раздражения (звука) к рецепторам

3. Молекулярные механизмы рецепции (трансдукции) звука по пунктам

4. Проводниковый отдел: проведение слухового сенсорного возбуждения к слуховой зоне коры

5. Трансформация потока слухового возбуждения в слуховых низших нервных центрах

6. Анализирующий корковый отдел - слуховые зоны коры

7. Адаптация слуховой сенсорной системы к звукам

6. Общая схема механизма слухового восприятия

Раздражитель

Раздражителем для слуховой сенсорной системы является звук.

Звук - это продольное колебание частиц той среды, которая передает звук. Звуковые колебания передаются по воздуху, воде, костям черепа, т.е. по газообразным, жидким и твердым средам.

Главные параметры звуковых волн - это частота колебаний, их амплитуда и тембр (спектр частот). Частота - это тон звука. Чем выше тон звука, тем выше частота звуковых колебаний. Диапазон восприятия звука человеком составляет примерно от 20 до 20000 гц (герц - одно колебание в секунду).

Звуки тоном ниже 20 гц называются инфразвуком , сознание их не воспринимает, но могут быть подсознательные реакции (беспокойство, тревога, страх и даже необъяснимый ужас). Инфразвуки с частотой 4 гц считаются самыми опасными, с частотой 8-14 гц - соответствуют альфа-ритму работы мозга и, видимо, могут вызывать трансовое состояние. Инфразвуки такой частоты способна производить профессиональная аппаратура на дискотеках и таким способом вызывать у присутствующих там людей особое изменённое состояние сознания.

Звуки тоном выше 20000 гц называются ультразвуком , человек их не воспринимает (однако кошки, собаки и другие животные воспринимают).

Наибольшая чувствительность уха находится в диапазоне от 1000 до 3000 гц – это как раз диапазон звуков человеческой речи.

Музыкальные воспроизводящие устройства имеют более широкий диапазон от 12-14 гц до 16000.

2. Проведение раздражения (звука) к рецепторам

Определение понятия

Виды нарушения обоняния

Определение понятия

Обонятельная (ольфакторная) сенсорная система , или обонятельный анализатор, - это нейросистема для распознавания летучих и водорастворимых веществ по конфигурации их молекул, создающая субъективные сенсорные образы в виде запахов.

Так же, как и вкусовая сенсорная система, обонятельная является системой химической чувствительности.

Болевая сенсорная система

(болевой анализатор)

Болевая сенсорная система - это совокупность нервных структур, воспринимающих повреждающие раздражения и формирующих болевые ощущения, т. е. боль. Понятие «болевая сенсорная система» явно шире, чем понятие «болевой анализатор», т. к. в состав болевой сенсорной системы обязательно включается система противодействия боли - «антиноцицептивная система». Понятие «болевой анализатор» может обойтись без антиноцицептивной системы, но это будет существенным упрощением.

Важная особенность болевого анализатора состоит в том, что адекватные (подходящие) для него раздражители могут относиться к самым разным классам. В качестве раздражения выступает повреждающее действие, следовательно, раздражители для болевого анализатора – это повреждающие факторы.

Что повреждается и нарушается:

  1. Целостность покровов тела и органов.
  2. Целостность клеточных мембран и клеток.
  3. Целостность самих ноцицептивных нервных окончаний.
  4. Оптимальное течение окислительных процессов в тканях.

В целом повреждения являются сигналом о нарушении нормальной жизнедеятельности.

Определение понятия «боль»

Существует два подхода к пониманию боли:

1. Боль – это ощущение . Оно имеет сигнальное значение для организма, точно так же как и ощущения другой модальности (зрение, слух и т.д.).

Боль – это неприятное, приносящее страдание ощущение , возникающее под действием сверхсильных раздражителей, в результате повреждения тканей или при кислородном голодании.

    1. Боль – это психофизическое состояние дискомфорта.

Оно сопровождается изменением деятельности органов и систем, возникновением новых эмоций и мотиваций. При этом подходе боль рассматривается как следствие той первичной боли, которую подразумевает первый подход. Возможно, более точным было бы в этом случае выражение «болезненное состояние» .

Компоненты болевой реакции

1. Двигательный компонент.

Возбуждение от моторной зоны коры доходит до мотонейронов спинного мозга, они передают его на мышцы, которые осуществляют двигательные реакции. В ответ на боль возникают двигательные рефлексы, рефлексы вздрагивания и настороженности, защитные рефлексы и поведение, направленное на устранение действия вредоносного фактора.

2. Вегетативный компонент.

Он обусловлен включением в системную болевую реакцию гипоталамуса - высшего вегетативного центра. Этот компонент проявляется в изменении вегетативных функций, необходимых для обеспечения защитной реакции организма. Меняется величина артериального давления, частота сердечных сокращений, дыхания, происходит перестройки обмена веществ и т.д.

3. Эмоциональный компонент.

Он проявляется в формировании отрицательной эмоциональной реакции, что обусловлено включением в процесс возбуждения эмоциогенных зон мозга. Эта отрицательная эмоция, в свою очередь, провоцирует различные поведенческие реакции: бегство, нападение, затаивание.

Каждый компонент болевой реакции может быть использован для оценки специфичности болевого ощущения.

Виды боли

В зависимости от путей проведения болевого возбуждения:

1. Первичная боль - эпикритическая . Эта боль чётко локализована , имеет обычно резкий, колющий характер, возникает при активации механорецепторов, возбуждение движется по А-волокнам, по неоспиноталамическому тракту в проекционные зоны соматосенсорной коры.

2. Вторичная боль – протопатическая. Эта боль медленно возникает, имеет нечёткую локализация, для неё характерен ноющий характер. Возникает при активации хемоноцицепторов, возбуждение движется по С-волокнам, палеоспиноталамическому тракту в неспецифические ядра таламуса, оттуда распространяются по различным областям коры. Этот вид боли обычно сопровождается моторными, вегетативными и эмоциональными реакциями.

В зависимости от ноцицепторов:

1. Соматическая , возникает в коже, мышцах, суставах и т.д. Она двухфазная: вначале эпикритическая затем протопатическая. Интенсивность зависит от степени и площади повреждения.

2. Висцеральная, возникает во внутренних органах, ее трудно локализовать. Боль может проецироваться на совсем другие участки, не те, где находятся породившие ее ноцицепторы.

В зависимости от локализации боли:

1. Местная боль, локализуется непосредственно в очаге ноцицептивного воздействия.

2. Проекционная боль, ощущение распространяется по ходу нерва и передается на его отдельные участки от места возникновения.

3. Иррадиирующая боль, ощущается не в области воздействия, а там, где находится другая ветвь возбужденного нерва.

4. Отраженная боль, ощущается в поверхностных участках кожи, которые иннервируются из того же самого сегмента спинного мозга, что и внутренние органы, порождающее ноцицептивное воздействие. Первоначально возбуждение возникает на ноцицепторах пораженных внутренних органов, затем оно проецируется за пределы больного органа, в области различных участков кожи либо в другие органы. За отраженные боли несут ответственность интернейроны спинного мозга, на которых конвергируют (сходятся) возбуждения с внутренних органов и кожных участков. Болевое возбуждение, возникающее во внутреннем органе, активирует общий интернейрон, и от него возбуждение бежит по тем же проводящим путям, что и при раздражении кожи. Боль может отражаться на участках, значительно удаленных от породившего её органа.

5. Фантомная боль, возникает после удаления органа (ампутации). Ответственность за нее несут стойкие очаги возбуждения, расположенные в ноцицептивных структурах ЦНС. Обычно это сопровождается дефицитом торможения в ЦНС. Поступая в кору головного мозга, возбуждение от генератора этого возбуждения (болевого нервного центра) воспринимается как длительная, непрерывная и мучительная боль.

Определение

Антиноцицептивная система – это иерархическая совокупность нервных структур на разных уровнях ЦНС, с собственными нейрохимическими механизмами, способная тормозить деятельность болевой (ноцицептивной) системы.

В АНЦ-системе используется в основном опиатергическая система регуляции , основанная на взаимодействии лигандов-опиоидов с опиатными рецепторами.

Антиноцицептивная система подавляет боль на нескольких различных уровнях. Если бы не было такой её обезболивающей работы, то, боюсь, что ведущим чувством в нашей жизни стала бы боль. Но по счастью, после первого резкого приступа боли она отступает, давая нам возможность передохнуть. Это - результат работы антиноцицептивной системы, подавившей боль через некоторое время после её возникновения.

Антиноцицептивная система также вызывает повышенный интерес оттого, что именно она породила интерес к наркотикам. Ведь первоначально наркотики применялись именно как обезболивающие средства, помогающие антиноцицептивной системе подавлять боль, или заменяющие её в подавлении боли. И до сих пор медицинское применение наркотиков оправдано именно их обезболивающим эффектом. К сожалению, побочные эффекты наркотиков делают человека зависимым от них и со временем превращают в особое страдающее существо, а затем обеспечивают ему преждевременную смерть...

В целом, "болевой анализатор", обеспечивающий восприятие боли, дает хороший пример различия между понятиями «сенсорная система» и «анализатор». Анализатором (т.е. воспринимающим устройством) является только некоторая часть от всей ноцицептивной сенсорной системы . Вместе с антиноцицептивной системой они составляют уже не просто анализатор, а более сложную саморегулирующуюся сенсорную систему.

Встречаются, например, люди с врожденным отсутствием чувства боли, при этом болевые ноцицептивные пути у них сохранены, а это значит, что у них существует механизм подавления болевой активности.

В 70-х годах ХХ века сформировалось представление об антиноцицептивной системе. Эта система ограничивает болевое возбуждение, предотвращает перевозбуждение ноцицептивных структур. Чем сильнее болевое ноцицептивное раздражение, тем сильнее происходит тормозное влияние антиноцицептивной системы.

При сверхсильных болевых воздействиях антиноцицептивная система не справляется, и тогда возникает болевой шок. При снижении тормозного воздействия антиноцицептивной системы болевая система может перевозбуждаться и порождать ощущение спонтанных (самопроизвольных) психогенных болей даже в здоровых органах.

Сенсорные системы

«Сенс» - переводится как «чувство», «ощущение».

Определение понятия

Сенсорные системы – это воспринимающие системы организма (зрительная, слуховая, обонятельная, осязательная, вкусовая, болевая, тактильная, вестибулярный аппарат, проприоцептивная, интероцептивная).

Сенсорные системы

это специализированные подсистемы нервной системы, обеспечивающие ей восприятие и ввод информации за счёт формирования субъективных ощущений на основе объективных раздражений.

Сенсорные системы включают в себя периферические сенсорные рецепторы вместе со вспомогательными структурам (органы чувств), отходящие от них нервные волокна (проводящие пути) и сенсорные нервные центры (низшие и высшие).

Низшие нервные центры трансформируют (перерабатывают) входящее сенсорное возбуждение в выходящее, а высшие нервные центры наряду с этой функцией образуют экранные структуры, формирующие нервную модель раздражения - сенсорный образ.

Можно сказать, что сенсорные системы - это «информационные входы» организма для восприятия им характеристик окружающей среды, а также характеристик внутренней среды самого организма. В физиологии принято делать ударение на букву «о», тогда как в технике - на букву «е». Поэтому технические воспринимающие системы - сЕ нсорные, а физиологические - сенсО рные.

Итак,сенсорные системы - это информационные входы в нервную систему.

Виды сенсорных систем

1. Слуховая. Адекватный раздражитель - звук.

2. Зрительная. Адекватный раздражитель - свет.

3. Вестибулярная. Адекватный раздражитель - гравитация, ускорение.

4. Вкусовая. Адекватный раздражитель - вкус (горький, кислый, сладкий, солёный).

5. Обонятельная. Адекватный раздражитель - запах.

6. Кинестетическая = осязательная (тактильная) + температурная (тепловая и холодовая). Адекватный раздражитель - давление, вибрация, тепло (повышенная температура), холод (пониженная температура).

7. Двигательная. Обеспечивает ощущение взаиморасположение частей тела в пространстве, ощущение своего тела). Именно двигательная сенсорная система позволяет нам дотронуться, например, рукой до своего носа или других частей тела даже с закрытыми глазами.

8. Мышечная (проприоцептивная). Обеспечивае ощущение степени напряжения мышц. Адекватный раздражитель - мышечное сокращение и растяжение сужожилий.

9. Болевая. Адекватный раздражитель - повреждение клеток, тканей или медиаторы боли.
1) Ноцицептивная (болевая).
2) Антиноцицептивная (обезболивающая).

10. Интероцептивная. Обеспечивает внутренние ощущения. Слабо контролируется сознанием и, как правило, даёт нечёткие ощущения. Однако в ряде случаев люди могут сказать, что ощущают в каком-либо внутреннем органе не просто дискомфорт, а состояние «давления», «тяжести», «распирания» и т.п. Интероцептивная сенсорная система обеспечивает поддержание гомеостаза , и при этом она не обязательно порождает какие-либо ощущения, воспринимаемые сознанием, т.е. не создаёт перцептивных сенсорных образов.

Восприятие - это перевод характеристик внешнего раздражения во внутренние нервные коды, доступные для обработки и анализа нервной системой (кодирование), и построение нервной модели раздражителя (сенсорного образа).

Восприятие позволяет строить внутренний образ, отражающий существенные характеристики внешнего раздражителя. Внутренний сенсорный образ раздражителя - это нервная модель, состоящая из системы нервных клеток. Важно понять, что эта нервная модель не может полностью соответствовать реальному раздражителю и всегда будет отличаться от него хотя бы в некоторых деталях.

К примеру, кубики на картинке справа образуют модель, близкую к реальности, но не способную в реальности существовать...

Анализаторы и сенсорные системы

И.П. Павлов создал учение об анализаторах. Это упрощённое представление о восприятии. Он делил анализатор на 3 звена.

Строение анализатора

1. Периферическая часть (отдаленная) – это рецепторы, воспринимающие раздражение и превращающие его в нервное возбуждение.

2. Проводниковый отдел – это проводящие пути, передающие сенсорное возбуждение, рождённое в рецепторах.

3. Центральный отдел – это участок коры больших полушарий головного мозга, анализирующий поступившее к нему сенсорное возбуждение и строящий за счёт синтеза возбуждений сенсорный образ.

Таким образом, например, окончательное зрительное восприятие происходит в мозге, а не в глазу.

Понятие сенсорная система шире , чем анализатор.

Она включает в себя дополнительные приспособления, системы настройки и системы саморегуляции.

Сенсорная система предусматривает обратную связь между мозговыми анализирующими структурами и воспринимающим рецептивным аппаратом. Для сенсорных систем характерен процесс адаптации к раздражению.

Адаптация – это процесс приспособления сенсорной системы и ее отдельных элементов к действию раздражителя.

«Сенс» - переводится как «чувство», «ощущение».

Определение понятия

Сенсорные системы – это воспринимающие системы организма (зрительная, слуховая, обонятельная, осязательная, вкусовая, болевая, тактильная, вестибулярный аппарат, проприоцептивная, интероцептивная).

Сенсорные системы - это специализированные подсистемы нервной системы, обеспечивающие ей восприятие и ввод информации за счёт формирования субъективных ощущений на основе объективных раздражений. Сенсорные системы включают в себя периферические сенсорные рецепторы вместе со вспомогательными структурам (органы чувств), отходящие от них нервные волокна (проводящие пути) и сенсорные нервные центры (низшие и высшие). Низшие нервные центры трансформируют (перерабатывают) входящее сенсорное возбуждение в выходящее, а высшие нервные центры наряду с этой функцией образуют экранные структуры, формирующие нервную модель раздражения - сенсорный образ. © Сазонов В.Ф., 2012-2016. © kineziolog.bodhu.ru, 2012-2016..

Можно сказать, что сенсорные системы - это «информационные входы» организма для восприятия им характеристик окружающей среды, а также характеристик внутренней среды самого организма. В физиологии принято делать ударение на букву «о», тогда как в технике - на букву «е». Поэтому технические воспринимающие системы - сЕ нсорные, а физиологические - сенсО рные.

Итак, сенсорные системы - это информационные входы в нервную систему.

Виды сенсорных систем

Анализаторы и сенсорные системы

И.П. Павлов создал учение об анализаторах. Это упрощённое представление о восприятии. Он делил анализатор на 3 звена.

Строение анализатора

    Периферическая часть (отдаленная) – это рецепторы, воспринимающие раздражение и превращающие его в нервное возбуждение.

    Проводниковый отдел – это проводящие пути, передающие сенсорное возбуждение, рождённое в рецепторах.

    Центральный отдел – это участок коры больших полушарий головного мозга, анализирующий поступившее к нему сенсорное возбуждение и строящий за счёт синтеза возбуждений сенсорный образ.

Таким образом, например, окончательное зрительное восприятие происходит в мозге, а не в глазу.

Понятие сенсорная система шире , чем анализатор. Она включает в себя дополнительные приспособления, системы настройки и системы саморегуляции. Сенсорная система предусматривает обратную связь между мозговыми анализирующими структурами и воспринимающим рецептивным аппаратом. Для сенсорных систем характерен процесс адаптации к раздражению.

Адаптация – это процесс приспособления сенсорной системы и ее отдельных элементов к действию раздражителя.

1. Сенсорная система активна , а не пассивна в передаче возбуждения.

2. В состав сенсорной системы входят вспомогательные структуры , обеспечивающие оптимальную настройку и работу рецепторов.

3. В состав сенсорной системы входят вспомогательные , которые не просто передают сенсорное возбуждение дальше, а меняют его характеристики и разделяют на несколько потоков, посылая их по разным направлениям.

4. Сенсорная система имеет обратные связи между последующими и предшествующими структурами, передающими сенсорное возбуждение.

5. Обработка и переработка сенсорного возбуждения происходит не только в коре головного мозга, но и в нижележащих структурах.

6. Сенсорная система активно подстраивается под восприятие раздражителя и приспосабливается к нему, т. е. происходит её адаптация .

7. Сенсорная система сложнее, чем анализатор.

Вывод:

Сенсорная система = анализатор + низший нервный центр (или несколько центров) + система регуляции.

Отделы сенсорной системы:

1. Рецепторы. Возможны также вспомогательные структуры (например глазное яблоко, ухо и т.п.).
2. Афферентные (чувствительные) (афферентные нейроны).
3. .
4. Высший нервный центр в коре больших полушарий головного мозга.

1. Принцип многоэтажности.

В каждой сенсорной системе существует несколько передаточных промежуточных инстанций на пути от рецепторов к коре больших полушарий головного мозга. В этих промежуточных низших нервных центрах происходит частичная переработка возбуждения (информации). Уже на уровне низших нервных центров формируются безусловные рефлексы, т. е. ответные реакции на раздражение, они не требуют участия коры головного мозга и осуществляются очень быстро.

Например: Мошка летит прямо в глаз - глаз моргнул в ответ, и мошка в него не попала. Для ответной реакции в виде моргания не требуется создавать полноценный образ мошки, достаточно простой детекции того, что объект быстро приближается к глазу.

Одна из вершин многоэтажного устройства сенсорной системы - это слуховая сенсорная система. В ней можно насчитать 6 этажей. Существуют также дополнительные обходные пути к высшим корковым структурам, которые минуют несколько низших этажей. Таким способом кора получает предварительный сигнал для повышения её готовности до основного потока сенсорного возбуждения.

Иллюстрация принципа многоэтажности:

2. Принцип многоканальности.

Возбуждение передается от рецепторов в кору всегда по нескольким параллельным путям. Потоки возбуждения частично дублируются, и частично разделяются. По ним передается информация о различных свойствах раздражителя.

Пример параллельных путей зрительной системы:

1-й путь: сетчатка - таламус - зрительная кора.

2-й путь: сетчатка - четверохолмие (верхние холмы) среднего мозга (ядра глазодвигательных нервов).

3-й путь: сетчатка - таламус - подушка таламуса - теменная ассоциативная кора.

При повреждении разных путей и результаты получаются различные.

Например: если разрушить наружное коленчатое тело таламуса (НКТ) в зрительном пути 1, то наступает полная слепота; если разрушить верхнее двухолмие среднего мозга в пути 2, то нарушается восприятие движения предметов в поле зрения; если разрушить подушку таламуса в пути 3, то пропадает узнавание предметов и зрительное запоминание.

Во всех сенсорных системах обязательно существуют три пути (канала) передачи возбуждения:

1) специфический путь: он ведет в первичную сенсорную проекционную зону коры,

2) неспецифический путь: он обеспечивает общую активность и тонус коркового отдела анализатора,

3) ассоциативный путь: он определяет биологическую значимость раздражителя и управляет вниманием.

В эволюционном процессе усиливается многоэтажность и многоканальность в структуре сенсорных путей.

Иллюстрация принципа многоканальности:

3. Принцип конвергенции.

Конвергенция - это схождение нервных путей в виде воронки. За счёт конвергенции нейрон верхнего уровня получает возбуждение от нескольких нейронов нижележащего уровня.

Например: в сетчатке глаза существует большая конвергенция. Фоторецепторов несколько десятков млн., а ганглиозных клеток - не более одного млн. Т.е. нервных волокон, передающих возбуждение от сетчатки во много раз меньше, чем фоторецепторов.

4. Принцип дивергенции.

Дивергенция - это расхождение потока возбуждения на несколько потоков от низшего этажа к высшему (напоминает расходящуюся воронку).

5. Принцип обратной связи.

1. Преобразование силы раздражения в частотный код импульсов – универсальный принцип действия любого сенсорного рецептора.

Причём во всех сенсорных рецепторах преобразование начинается с вызванного стимулом изменения свойств клеточной мембраны. Под действием стимула (раздражителя) в мембране клеточного рецептора должны открыться (а в фоторецепторах, наоборот, закрыться) стимул-управляемые ионные каналы. Через них начинается поток ионов и развивается состояние деполярицации мембраны. Смотри: Рецепция и трансдукция

2. Топическое соответствие - поток возбуждения (информационный поток) во всех передаточных структурах соответствует значимым характеристикам раздражителя. Это означает, что важные признаки раздражителя будут закодированы в виде потока нервных импульсов и нервной системой будет построен внутренний сенсорный образ, похожий на раздражитель - нервная модель стимула. "Топическое" - означает "пространственное".

3. Детекция - это выделение качественных признаков. Нейроны-детекторы реагируют на определенные признаки объекта и не реагируют на все остальное. Нейроны-детекторы отмечают контрастные переходы. Детекторы придают сложному сигналу осмысленность и уникальность. В разных сигналах они выделяют одинаковые параметры. К примеру, только детекция поможет вам отделить контуры маскирующейся камбалы от окружающего её фона.

4. Искажение информации об исходном объекте на каждом уровне передачи возбуждения.

5. Специфичность рецепторов и органов чувств. Их чувствительность максимальна к определенному типу раздражителя с определенной интенсивностью.

6. Закон специфичности сенсорных энергий: ощущение определяется не стимулом, а раздражаемым сенсорным органом. Ещё точнее можно сказать так: ощущение определяется не раздражителем, а тем сенсорным образом, который строится в высших нервных центрах в ответ на действие раздражителя. Например, источник болевого раздражения может находиться в одном месте тела, а ощущение боли может проецироваться на совсем другой участок. Или же: один и тот же раздражитель может вызывать очень разные ощущения в зависимости от адаптации к нему нервной системы и/или органа чувств.

7. Обратная связь между последующими и предшествующими структурами. Последующие структуры могут менять состояние предшествующих и менять таким способом характеристики приходящего к ним потока возбужджения.

Адекватный раздражитель – это раздражитель, дающий максимальную ответную реакцию, при минимальной силе раздражения.

Адекватность раздражителя - относительное понятие. Так, например, существует белок туаматин, который имеет молекулярную массу 22 тысячи, состоит из 207 остатков аминокислот и в 8 тысяч раз слаще сахарозы. А ведь именно водный раствор сахарозы принят эталоном сладкого вкуса.

Специфичность сенсорных систем предопределяется их структурой. Структура ограничивает их реакции на один раздражитель и способствует восприятию других.

Подробности по сенсорным системам для докладов и рефератов можно посмотреть тут:

Реброва Н.П. Физиология сенсорных систем: Учебно-методическое пособие. СПб.,Стратегия будущего, 2007. Читать

bibliotekar.ru/447/213.htm

humbio.ru/humbio/ssb/00000aa0.htm Электронный учебник по биологии человека, раздел Сенсорные системы.

medbiol.ru/medbiol/physiology/001b2075.htm Электронный учебник, раздел Сенсорные системы

http://website-seo.ru/read/page/15/ Основные электронные ресурсы по психофизиологии (разрешено скачивание).

website-seo.ru/read/page/2/ Дополнительные электронные ресурсы по психофизиологии (разрешено скачивание).

www.maik.ru/cgi-bin/list.pl?page=sensis elibrary.ru/title_about.asp?id=8212 Журнал Сенсорные системы.

ito.osu.ru/resour/el_book/courses/temp3/glava_4_1.html Сенсорные системы кратенько.

www.ozrenii.ru/ О зрении (не классическое представление информации о зрительной системе).

Лекция

Значение сенсорных систем для организма человека.

Зрительные и слуховые сенсорные системы:

Строение, функции и гигиена.

План

1. Значение сенсорных систем для организма человека.

2. Зрительная сенсорная система: строение, функции. Нарушения зрения.

3. Профилактика нарушения зрения у детей и подростков.

4. Эмбриология глаза. Возрастные особенности зрительных рефлекторных реакций.

5. Слуховая сенсорная система: строение, функции.

6. Болезни уха и гигиена слуха. Профилактика негативного влияния "школьного" шума на организм школьника.

7. Возрастные особенности слухового анализатора.

Основные понятия : органы чувств, анализатор, сенсорные системы, зрительный анализатор, слуховой анализатор, рецепторы, адаптация, глазное яблоко, вспомогательный аппарат глаза, фоторецепторы, слепое пятно, желтое пятно, аккомодация, дальнозоркость, близорукость, рефракция, рефракция, гиперметропия, эмметропия, миопия, астигматизм, офтальмотренаж, естественное и искусственное освещение, световой коэффициент, наружное ухо, среднее ухо, внутреннее ухо, Фонорецепторы, кортиев орган.

Литература

1. Даценко И.И. Гигиена и экология человека. Учебное пособие Львов: Афиша, 2000. С. 238-242.

2. Подоляк-Шумило Н.Г., Познанский С.С. Школьная гигиена. Учеб. пособие для пед. ин-тив.- К.: Высшая школа, 1981.- С. 48-53.

3. Попов С.В. Валеология в школе и дома (О физическом благополучии школьников) .- СПб.: СОЮЗ, 1997.-С. 80-92.

4. Советов С.Е. и др. Школьная гигиена. Учеб. пособие для студентов пед. ин-тив.- К.: Высшая школа, 1971.- С. 70-75.

5. Старушенко Л.1. Клиническая анатомия и физиология человека: Учебное пособие М.: УСМП, 2001. С. 231-237.

6. Присяжнюк М.С. Человек и его здоровье: Пробы, учеб. пособие.-М.: Феникс, 1998.-С. 59-71.

7. Хрипкова А.Г. и др. Возрастная физиология и школьная гигиена. Пособие для пед. ин-тов / А.Г.Хрипкова, М.В.Антропова, Д.А.Фарбер.- М.: Просвещение, 1990.- С. 79-96.

8. Хрипкова А.Г., Колесов Д.В. Гигиена и здоровье школьника.- М.: Просвещение, 1988.- С. 141-148.

Значение сенсорных систем для организма человека



Система, которая обеспечивает восприятие, передачу и переработку информации о явлениях окружающей среды, называют анализатором, или сенсорной системой . Учение об анализаторах разработано И.П. Павловым. Анализатор, по учению И.П. Павлова, состоит из трех неразрывно связанных отделов:

1) рецептора - периферического воспринимающего аппарата, который воспринимает раздражение и превращает его в нервный процесс возбуждения;

2) проводника возбуждения - центростремительного нервного волокна, которое передает возбуждение в головной мозг;

3) нервного центра - участка коры головного мозга, в котором происходит тонкий анализ возбуждения и возникают ощущения.

Таким образом, каждый анализатор состоит из периферического, проводникового и центрального отделов. К периферическому отделу относится рецепторный аппарат, к проводному - афферентные нейроны и проводящие пути, к центральному - участки коры полушарий большого мозга. Периферический отдел анализатора представляют органы чувств с заложенными в них рецепторами, с помощью которых человек познает окружающий мир, получает информацию о нем. Они называются органами внешнего чувств, или экстерорецепторы.

Экстерорецепторы - чувствительные образования, осуществляющих восприятие раздражений от окружающей среды. К ним относятся воспринимающие клетки сетчатки глаза, уши, рецепторы кожи (прикосновения и давления), органы обоняния, вкуса.

Интерорецепторы - чувствительные образования, воспринимающие изменения внутренней - среды организма.

Интерорецепторы расположены в тканях различных внутренних органов (сердца, печени, почек, кровеносных сосудов и др.) И воспринимают изменения внутренней среды организма и состояние внутренних органов. В результате поступления импульсов от рецепторов внутренних органов происходит саморегуляция дыхания, артериального давления, деятельности сердца.

Проприорецепторы - чувствительные образования, сигнализирующие о положении и движении тела содержатся в мышцах, суставах и воспринимают сокращение и растяжение мышц.

Таким образом, у человека есть такие органы чувств : зрения, слуха, ощущение положения тела в пространстве, вкуса, обоняния, кожной чувствительности, мышечно-суставного чувства.

По характеру взаимодействия с раздражителем рецепторы делятся на контактные и дистанционные; по виду энергии, трансформируется в рецепторы - механорецепторы, хеморецепторы, фоторецепторы и другие.

Контактные рецепторы могут получить информацию о свойствах предмета, явления, получить раздражение только при контакте, непосредственном соприкосновении с агентом среды. Это - хеморецепторы языка, осязательные рецепторы кожи.

Благодаря дистанционным рецепторам можно получить информацию на расстоянии: агент среды распространяет волновую энергию - световую, звуковую. Именно ее и улавливают дистанционные органы чувств, например, глаз, ухо.

Механорецепторы трансформируют механическую энергию в энергию нервного возбуждения (например, рецепторы осязания), хеморецепторы - мимической (рецепторы обоняния, вкуса), фоторецепторы - световую (рецепторы органа зрения), терморецепторы - тепловую (холодовые и тепловые рецепторы кожи).

Рецепторы отличаются очень высокой возбудимостью по адекватности раздражений. Специфические для определенного рецептора раздражители, к которым он специально приспособлен в процессе фило- и онтогенеза, называется называются адекватными. При действии адекватных раздражителей возникают ощущения, характерные для определенного органа чувств (глаз воспринимает только световые волны, но не воспринимает запахи, звук).

Кроме адекватных, существуют неадекватные раздражители, которые обуславливают только примитивные ощущения, присущие определенному анализатору. Например, от удара в ухо возникает звон в ушах.

Возбудимость рецепторов зависит как от состояния всего анализатора, так и от общего состояния организма. Наименьшая разница в силе двух раздражителей одного вида, которая может восприниматься органами чувств, называется порогом различения . Однако большинство импульсов от рецепторов внутренних органов, достигая коры большого мозга, не вызывает психических явлений. Такие импульсы называются субсенсорными: они ниже порога ощущений и потому не вызывают ощущений.

Рецепторы способны привыкать к силе раздражителя. Это свойство называют адаптацией, при которой уменьшается или увеличивается чувствительность рецепторов. Максимальная скорость адаптации для рецепторов, которые воспринимают прикосновение к коже, наименьшая - для рецепторов мышц. Медленнее адаптируются рецепторы кровеносных сосудов и легких, обеспечивает постоянную саморегуляцию артериального давления и дыхания. Обусловлена ​​адаптация, прежде всего, изменениями в корковых отделах анализаторов, а также процессами, которые осуществляются в самых рецепторах.

Проводниковый отдел сенсорных систем состоит из доцентровых (афферентных) нервных волокон в составе чувствительных нервов и некоторых подкорковых образований (ядер гипоталамуса, таламуса и ретикулярной формации). В этом отделе импульс от рецепторов не только проводится, но и кодируется и превращается.

В центральном отделе анализатора нервные импульсы приобретают новые качества и отражаются в сознании в виде ощущения. На основе ощущения возникают сложные субъективные образы:восприятия, представления.

У детей органы чувств еще несовершенны и находятся в процессе развития. Первыми развиваются органы вкуса и обоняния, а затем органы осязания. Для усовершенствования различных органов чувств у детей большое значение масс правильно поставленная тренировка их в процессе развития.

Зрительная сенсорная система. Орган слуха и равновесия. Анализаторы обоняния и вкуса. Кожная сенсорная система.

Организм человека как единое целое - единство функций и форм. Регуляция жизнеобеспечения организма, механизмы поддержания гомеостаза.

Тема для самостоятельного изучения: Строение глаза. Строение уха. Строение языка и расположение зон чувствительности на нем. Строение носа. Тактильная чувствительность.

Органы чувств (анализаторы)

Человек воспринимает окружающий его мир посредством органов чувств (анализаторов): осязания, зрения, слуха, вкуса и обоняния. В каждом из них имеются специфические рецепторы, воспринимающие определенный вид раздражения.

Анализатор (орган чувств) - состоит из 3 отделов: периферического, проводникового и центрального.Периферическое (воспринимающее) звено анализатора - рецепторы. В них происходит преобразование сигналов внешнего мира (свет, звук, температура, запах и др.) в нервные импульсы. В зависимости от способа взаимодействия рецептора с раздражителем различают контактные (рецепторы кожи, вкусовые) и дистантные (зрительные, слуховые, обонятельные) рецепторы.Проводниковое звено анализатора - нервные волокна. Они проводят возбуждение от рецептора до коры больших полушарий.Центральное (обрабатывающее) звено анализатора - участок коры больших полушарий. Нарушение функций одной из частей вызывает нарушение функций всего анализатора.

Различают зрительный, слуховой, обонятельный, вкусовой и кожный анализаторы, а также двигательный анализатор и вестибулярный анализатор. Каждый рецептор приспособлен к своему определенному раздражителю и не воспринимает другие. Рецепторы способны приспосабливаться к силе раздражителя, посредством снижения или повышения чувствительности. Эта способность называется адаптацией.

Зрительный анализатор. Рецепторы возбуждаются от квантов света. Органом зрения является глаз. Он состоит из глазного яблока и вспомогательного аппарата.Вспомогательный аппарат представлен веками, ресницами, слезными железами и мышцами глазного яблока.Веки образованы складками кожи, выстланными изнутри слизистой оболочкой (конъюнктивой).Ресницы защищают глаз от частичек пыли.Слезные железы расположены в наружном верхнем углу глаза и продуцируют слезы, которые омывают переднюю часть глазного яблока и через носослезный канал попадают в полость носа.Мышцы глазного яблока приводят его в движение и ориентируют в сторону рассматриваемого предмета.

Глазное яблоко расположено в глазнице и имеет шаровидную форму. Оно содержит три оболочки:фиброзную (наружную),сосудистую (среднюю) и сетчатую (внутреннюю), а также внутреннее ядро, состоящее из хрусталика, стекловидного тела и водянистой влаги передней и задней камер глаза.

Задний отдел фиброзной оболочки - плотная непрозрачная соединительнотканная белочная оболочка (склера) , передний - прозрачная выпуклая роговица. Сосудистая оболочка богата сосудами и пигментами. В ней выделяют собственно сосудистую оболочку (задняя часть),ресничное тело и радужную оболочку. Основную массу ресничного тела составляет ресничная мышца, изменяющая своим сокращением кривизну хрусталика. Радужная оболочка (радужка ) имеет вид кольца, окраска которого зависит от количества и характера пигмента, в ней содержащегося. В центре радужки находится отверстие -зрачок. Он может сужаться и расширяться благодаря сокращению мышц, расположенных в радужной оболочке.

В сетчатке различают две части: заднюю - зрительную, воспринимающую световые раздражения, и переднюю - слепую, не содержащую светочувствительных элементов. Зрительная часть сетчатки содержит светочувствительные рецепторы. Имеется два вида зрительных рецепторов: палочки (130 млн) и колбочки (7 млн).Палочки возбуждаются слабым сумеречным светом и не способны различать цвет.Колбочки возбуждаются ярким светом и способны различать цвет. В палочках имеется красный пигмент - родопсин , а в колбочках - иодопсин . Прямо напротив зрачка имеется желтое пятно - место наилучшего видения, в состав которого входят только колбочки. Поэтому наиболее четко мы видим предметы, когда изображение падает на желтое пятно. По направлению к периферии сетчатки число колбочек уменьшается, количество палочек нарастает. По периферии располагаются только палочки. Место на сетчатке, откуда выходит зрительный нерв, лишено рецепторов и называется слепое пятно .

Большая часть полости глазного яблока заполнена прозрачной студенистой массой, образующей стекловидное тело, которое поддерживает форму глазного яблока.Хрусталик представляет собой двояковыпуклую линзу. Его задняя часть прилегает к стекловидному телу, а передняя - обращена к радужной оболочке. При сокращении мышцы ресничного тела, связанной с хрусталиком, меняется его кривизна и лучи света преломляются так, чтобы изображение объекта зрения попало на желтое пятно сетчатки. Способность хрусталика изменять свою кривизну в зависимости от удаленности предметов называют аккомодацией. При нарушении аккомодации могут возникнуть близорукость (изображение фокусируется перед сетчаткой) и дальнозоркость (изображение фокусируется за сетчаткой). При близорукости человек видит нечетко дальние предмета, при дальнозоркости - ближние. С возрастом происходит уплотнение хрусталика, ухудшение аккомодации, развивается дальнозоркость.

На сетчатке изображение получается перевернутым и уменьшенным. Благодаря переработке в коре информации, получаемой от сетчатки и рецепторов других органов чувств, мы воспринимаем предметы в их естественном положении.

Слуховой анализатор. Рецепторы возбуждаются от звуковых колебаний воздуха. Органом слуха является ухо. Оно состоит из наружного, среднего и внутреннего уха.Наружное ухо состоит из ушной раковины и слухового прохода.Ушные раковины служат для улавливания и определения направления звука.Наружный слуховой проход начинается наружным слуховым отверстием и заканчивается слепо барабанной перепонкой , которая отделяет наружное ухо от среднего. Он выстлан кожей и имеет железы, выделяющие ушную серу.

Среднее ухо состоит из барабанной полости, слуховых косточек и слуховой (евстахиевой) трубы.Барабанная полость заполнена воздухом и соединена с носоглоткой узким проходом -слуховой трубой , через которое поддерживается одинаковое давление в среднем ухе и окружающем человека пространстве. Слуховые косточки -молоточек, наковальня и стремечко - соединены между собой подвижно. По ним колебания от барабанной перепонки передаются во внутреннее ухо.

Внутреннее ухо состоит из костного лабиринта и расположенного в нем перепончатого лабиринта.Костный лабиринт содержит три отдела: преддверие, улитку и полукружные каналы. Улитка относится к органу слуха, преддверие и полукружные каналы - к органу равновесия (вестибулярному аппарату).Улитка - костный канал, закрученный в виде спирали. Ее полость разделена тонкой перепончатой перегородкой - основной мембраной, на которой располагаются рецепторные клетки. Вибрация жидкости улитки раздражает слуховые рецепторы.

Ухо человека воспринимает звуки с частотой от 16 до 20 000 Гц. Звуковые волны через наружный слуховой проход достигают барабанной перепонки и вызывают ее колебания. Эти колебания усиливаются (почти в 50 раз) системой слуховых косточек и передаются жидкости в улитке, где воспринимаются слуховыми рецепторами. Нервный импульс передается от слуховых рецепторов через слуховой нерв в слуховую зону коры больших полушарий.

Вестибулярный анализатор. Вестибулярный аппарат расположен во внутреннем ухе и представлен преддверием и полукружными каналами.Преддверие состоит из двух мешочков.Три полукружных канала расположены в трех взаимно противоположных направлениях соответствующих трем измерениям пространства. Внутри мешочков и каналов имеются рецепторы, которые способны воспринимать давление жидкости. Полукружные каналы воспринимают информацию о положении тела в пространстве. Мешочки воспринимают замедление и ускорение, изменение силы тяжести.

Возбуждение рецепторов вестибулярного аппарата сопровождается рядом рефлекторных реакций: изменением тонуса мышц, сокращением мышц, способствующих выпрямлению тела и сохранению позы. Импульсы от рецепторов вестибулярного аппарата по вестибулярному нерву поступают в центральную нервную систему. Вестибулярный анализатор функционально связан с мозжечком, который регулирует его деятельность.

Вкусовой анализатор. Вкусовые рецепторы раздражаются химическими веществами, растворенными в воде. Органом восприятия являются вкусовые почки - микроскопические образования в слизистой оболочке полости рта (на языке, мягком небе, задней стенки глотки и надгортаннике). Рецепторы, специфичные к восприятию сладкого, расположены на кончике языка, горького - на корне, кислого и соленого - по бокам языка. С помощью вкусовых рецепторов происходит опробование пищи, определяется ее пригодность или непригодность для организма, при их раздражении происходит выделение слюны и желудочного и поджелудочного соков. Нервный импульс передается от вкусовых почек через вкусовой нерв во вкусовую зону коры больших полушарий.

Обонятельный анализатор. Рецепторы обоняния раздражаются газообразными химическими веществами. Органом восприятия являются воспринимающие клетки в слизистой оболочке носа. Нервный импульс передается от обонятельных рецепторов через обонятельный нерв в обонятельную зону коры больших полушарий.

Кожный анализатор. Кожа содержит рецепторы , воспринимающие тактильные (прикосновение, давление), температурные (тепловые и холодовые) и болевые раздражения. Органом восприятия являются воспринимающие клетки в слизистых оболочках и коже. Нервный импульс передается от осязательных рецепторов через нервы в кору больших полушарий. С помощью осязательных рецепторов человек получает представление о форме, плотности, температуре тел. Тактильных рецепторов больше всего на кончиках пальцев, ладонях, подошвах ног, языке.

Двигательный анализатор. Рецепторы возбуждаются при сокращении и расслаблении мышечных волокон. Органом восприятия являются воспринимающие клетки в мышцах, связках, на суставных поверхностях костей.

Все сенсорные системы построены по единому принципу и состоят из трех отделов: периферического, проводникового и центрального.

Периферический отдел представлен органом чувства. В его состав входят рецепторы - окончания чувствительных нервных волокон или специализированные клетки. Они обеспечивают преобразование энергии раздражителя в нервные импульсы.

Рецепторы различаются по месту расположения (внутренние и наружные), строению и особенностям восприятия энергии раздражителя (одни воспринимают механические, другие - химические, третьи - световые стимулы).

Помимо рецепторов органы чувств включают в себя вспомогательные структуры, выполняющие защитную, опорную и некоторые другие функции. Например, вспомогательный аппарат глаза представлен глазодвигательными мышцами, веками и слезными железами.

Проводниковый отдел сенсорной системы состоит из чувствительных нервных волокон, образующих в большинстве случаев специализированный нерв. Он доставляет информацию от рецепторов в центральный отдел сенсорной системы.

И наконец, центральный отдел расположен в коре больших полушарий головного мозга. Здесь находятся высшие сенсорные центры, обеспечивающие окончательный анализ поступившей информации и формирование соответствующих ощущений.

Таким образом, сенсорная система - это совокупность специализированных структур нервной системы, которые осуществляют процессы приема и обработки информации из внешней и внутренней среды, а также формируют ощущения.

Различают зрительную, слуховую, вестибулярную, вкусовую, обонятельную и другие сенсорные системы.

Зрительная сенсорная система

Ее периферическая часть представлена органом зрения (глазом), проводниковая - зрительным нервом, а центральная - зрительной зоной, расположенной в затылочной доле коры больших полушарий.

Световые лучи от рассматриваемых предметов действуют на светочувствительные клетки глаза и вызывают в них возбуждение. Оно передается по зрительному нерву в кору больших полушарий. Здесь в затылочных долях возникают зрительные ощущения формы, окраски, величины, расположения и направления движения предметов.

Слуховая сенсорная система играет очень важную роль. Ее деятельность лежит в основе обучения речи. Она представлена ухом - органом слуха (периферический отдел), слуховым нервом (проводниковый отдел) и слуховой зоной, расположенной в височной доле коры больших полушарий (центральный отдел).

Вестибулярная сенсорная система обеспечивает пространственную ориентацию человека. С ее помощью мы получаем информацию об ускорениях и замедлениях, возникающих при движении. Она представлена органом равновесия, вестибулярным нервом и соответствующей зоной в височных долях коры больших полушарий.

Ощущение положения тела в пространстве особенно необходимо летчикам, аквалангистам, акробатам и др. При повреждении органа равновесия человек не может уверенно стоять и ходить.

Вкусовая сенсорная система осуществляет анализ действующих на орган вкуса (язык) растворимых химических раздражителей. С ее помощью определяется пригодность пищи.

Наш язык покрыт слизистой оболочкой, складки которой содержат вкусовые почки (рис.). Внутри каждой почки расположены рецепторные клетки с микроворсинками.

Рецепторы связаны с нервными волокнами, которые входят в мозг в составе черепных нервов. По ним импульсы достигают задней части центральной извилины коры головного мозга, где и формируются вкусовые ощущения.

Различают четыре основных вкусовых ощущения: горькое, сладкое, кислое и соленое. Кончик языка проявляет наиболее высокую чувствительность к сладкому, края - соленому и кислому, а корень - к горьким веществам.

Обонятельная сенсорная система осуществляет восприятие и анализ химических раздражителей, находящихся во внешней среде.

Периферический отдел обонятельной сенсорной системы представлен эпителием носовой полости, в котором имеются рецепторные клетки с микроворсинками. Аксоны этих чувствительных клеток образуют обонятельный нерв, который направляется в полость черепа (рис.).

По нему возбуждение проводится к обонятельным центрам коры больших полушарий, где и осуществляется распознавание запахов.

Существенную роль в познании внешнего мира у человека играет осязание. Оно обеспечивает способность воспринимать и различать форму, размер и характер поверхности предмета. Рецепторы, участвующие в процессах восприятия раздражителей, действующих на кожу, весьма разнообразны. Они реагируют не только на прикосновения, но также на тепло, холод и болевые воздействия. Больше всего тактильных рецепторов на губах и ладонной поверхности пальцев рук, меньше всего - на туловище. Возбуждение от рецепторов по чувствительным нейронам передается в зону кожной чувствительности коры больших полушарий, где возникают соответствующие ощущения.