Значит прогрессия возрастающая найдем. Алгебраическая прогрессия

При изучении алгебры в общеобразовательной школе (9 класс) одной из важных тем является изучение числовых последовательностей, к которым относятся прогрессии -геометрическая и арифметическая. В данной статье рассмотрим арифметическую прогрессию и примеры с решениями.

Что собой представляет арифметическая прогрессия?

Чтобы это понять, необходимо дать определение рассматриваемой прогрессии, а также привести основные формулы, которые далее будут использованы при решении задач.

Арифметическая или - это такой набор упорядоченных рациональных чисел, каждый член которого отличается от предыдущего на некоторую постоянную величину. Эта величина называется разностью. То есть, зная любой член упорядоченного ряда чисел и разность, можно восстановить всю арифметическую прогрессию.

Приведем пример. Следующая последовательность чисел будет прогрессией арифметической: 4, 8, 12, 16, ..., поскольку разность в этом случае равна 4 (8 - 4 = 12 - 8 = 16 - 12). А вот набор чисел 3, 5, 8, 12, 17 уже нельзя отнести к рассматриваемому виду прогрессии, поскольку разность для него не является постоянной величиной (5 - 3 ≠ 8 - 5 ≠ 12 - 8 ≠ 17 - 12).

Важные формулы

Приведем теперь основные формулы, которые понадобятся для решения задач с использованием арифметической прогрессии. Обозначим символом a n n-й член последовательности, где n - целое число. Разность обозначим латинской буквой d. Тогда справедливы следующие выражения:

  1. Для определения значения n-го члена подойдет формула: a n = (n-1)*d+a 1 .
  2. Для определения суммы первых n слагаемых: S n = (a n +a 1)*n/2.

Чтобы понять любые примеры арифметической прогрессии с решением в 9 классе, достаточно запомнить эти две формулы, поскольку на их использовании строятся любые задачи рассматриваемого типа. Также следует не забывать, что разность прогрессии определяется по формуле: d = a n - a n-1 .

Пример №1: нахождение неизвестного члена

Приведем простой пример прогрессии арифметической и формул, которые необходимо использовать для решения.

Пусть дана последовательность 10, 8, 6, 4, ..., необходимо в ней найти пять членов.

Из условия задачи уже следует, что первые 4 слагаемых известны. Пятое можно определить двумя способами:

  1. Вычислим для начала разность. Имеем: d = 8 - 10 = -2. Аналогичным образом можно было взять любые два других члена, стоящих рядом друг с другом. Например, d = 4 - 6 = -2. Поскольку известно, что d = a n - a n-1 , тогда d = a 5 - a 4 , откуда получаем: a 5 = a 4 + d. Подставляем известные значения: a 5 = 4 + (-2) = 2.
  2. Второй способ также требует знания разности рассматриваемой прогрессии, поэтому сначала нужно определить ее, как показано выше (d = -2). Зная, что первый член a 1 = 10, воспользуемся формулой для n числа последовательности. Имеем: a n = (n - 1) * d + a 1 = (n - 1) * (-2) + 10 = 12 - 2*n. Подставляя в последнее выражение n = 5, получаем: a 5 = 12-2 * 5 = 2.

Как видно, оба способа решения привели к одному и тому же результату. Отметим, что в этом примере разность d прогрессии является отрицательной величиной. Такие последовательности называются убывающими, так как каждый следующий член меньше предыдущего.

Пример №2: разность прогрессии

Теперь усложним немного задачу, приведем пример, как найти разность прогрессии арифметической.

Известно, что в некоторой прогрессии алгебраической 1-й член равен 6, а 7-й член равен 18. Необходимо найти разность и восстановить эту последовательность до 7 члена.

Воспользуемся формулой для определения неизвестного члена: a n = (n - 1) * d + a 1 . Подставим в нее известные данные из условия, то есть числа a 1 и a 7 , имеем: 18 = 6 + 6 * d. Из этого выражения можно легко вычислить разность: d = (18 - 6) /6 = 2. Таким образом, ответили на первую часть задачи.

Чтобы восстановить последовательность до 7 члена, следует воспользоваться определением алгебраической прогрессии, то есть a 2 = a 1 + d, a 3 = a 2 + d и так далее. В итоге восстанавливаем всю последовательность: a 1 = 6, a 2 = 6 + 2=8, a 3 = 8 + 2 = 10, a 4 = 10 + 2 = 12, a 5 = 12 + 2 = 14, a 6 = 14 + 2 = 16, a 7 = 18.

Пример №3: составление прогрессии

Усложним еще сильнее условие задачи. Теперь необходимо ответить на вопрос, как находить арифметическую прогрессию. Можно привести следующий пример: даны два числа, например, - 4 и 5. Необходимо составить прогрессию алгебраическую так, чтобы между этими помещалось еще три члена.

Прежде чем начинать решать эту задачу, необходимо понять, какое место будут занимать заданные числа в будущей прогрессии. Поскольку между ними будут находиться еще три члена, тогда a 1 = -4 и a 5 = 5. Установив это, переходим к задаче, которая аналогична предыдущей. Снова для n-го члена воспользуемся формулой, получим: a 5 = a 1 + 4 * d. Откуда: d = (a 5 - a 1)/4 = (5 - (-4)) / 4 = 2,25. Здесь получили не целое значение разности, однако оно является рациональным числом, поэтому формулы для алгебраической прогрессии остаются теми же самыми.

Теперь добавим найденную разность к a 1 и восстановим недостающие члены прогрессии. Получаем: a 1 = - 4, a 2 = - 4 + 2,25 = - 1,75, a 3 = -1,75 + 2,25 = 0,5, a 4 = 0,5 + 2,25 = 2,75, a 5 = 2,75 + 2,25 = 5, что совпало с условием задачи.

Пример №4: первый член прогрессии

Продолжим приводить примеры арифметической прогрессии с решением. Во всех предыдущих задачах было известно первое число алгебраической прогрессии. Теперь рассмотрим задачу иного типа: пусть даны два числа, где a 15 = 50 и a 43 = 37. Необходимо найти, с какого числа начинается эта последовательность.

Формулы, которыми пользовались до настоящего времени, предполагают знание a 1 и d. В условии задачи об этих числах ничего неизвестно. Тем не менее выпишем выражения для каждого члена, о котором имеется информация: a 15 = a 1 + 14 * d и a 43 = a 1 + 42 * d. Получили два уравнения, в которых 2 неизвестные величины (a 1 и d). Это означает, что задача сводится к решению системы линейных уравнений.

Указанную систему проще всего решить, если выразить в каждом уравнении a 1 , а затем сравнить полученные выражения. Первое уравнение: a 1 = a 15 - 14 * d = 50 - 14 * d; второе уравнение: a 1 = a 43 - 42 * d = 37 - 42 * d. Приравнивая эти выражения, получим: 50 - 14 * d = 37 - 42 * d, откуда разность d = (37 - 50) / (42 - 14) = - 0,464 (приведены лишь 3 знака точности после запятой).

Зная d, можно воспользоваться любым из 2 приведенных выше выражений для a 1 . Например, первым: a 1 = 50 - 14 * d = 50 - 14 * (- 0,464) = 56,496.

Если возникают сомнения в полученном результате, можно его проверить, например, определить 43 член прогрессии, который задан в условии. Получим: a 43 = a 1 + 42 * d = 56,496 + 42 * (- 0,464) = 37,008. Небольшая погрешность связана с тем, что при вычислениях использовалось округление до тысячных долей.

Пример №5: сумма

Теперь рассмотрим несколько примеров с решениями на сумму арифметической прогрессии.

Пусть дана числовая прогрессия следующего вида: 1, 2, 3, 4, ...,. Как рассчитать сумму 100 этих чисел?

Благодаря развитию компьютерных технологий можно эту задачку решить, то есть последовательно сложить все числа, что вычислительная машина сделает сразу же, как только человек нажмет клавишу Enter. Однако задачу можно решить в уме, если обратить внимание, что представленный ряд чисел является прогрессией алгебраической, причем ее разность равна 1. Применяя формулу для суммы, получаем: S n = n * (a 1 + a n) / 2 = 100 * (1 + 100) / 2 = 5050.

Любопытно отметить, что эта задача носит название "гауссовой", поскольку в начале XVIII века знаменитый немецкий еще будучи в возрасте всего 10 лет, смог решить ее в уме за несколько секунд. Мальчик не знал формулы для суммы алгебраической прогрессии, но он заметил, что если складывать попарно числа, находящиеся на краях последовательности, то получается всегда один результат, то есть 1 + 100 = 2 + 99 = 3 + 98 = ..., а поскольку этих сумм будет ровно 50 (100 / 2), то для получения правильного ответа достаточно умножить 50 на 101.

Пример №6: сумма членов от n до m

Еще одним типичным примером суммы арифметической прогрессии является следующий: дан такой чисел ряд: 3, 7, 11, 15, ..., нужно найти, чему будет равна сумма его членов с 8 по 14.

Задача решается двумя способами. Первый из них предполагает нахождение неизвестных членов с 8 по 14, а затем их последовательное суммирование. Поскольку слагаемых немного, то такой способ не является достаточно трудоемким. Тем не менее предлагается решить эту задачу вторым методом, который является более универсальным.

Идея заключается в получении формулы для суммы алгебраической прогрессии между членами m и n, где n > m - целые числа. Выпишем для обоих случаев два выражения для суммы:

  1. S m = m * (a m + a 1) / 2.
  2. S n = n * (a n + a 1) / 2.

Поскольку n > m, то очевидно, что 2 сумма включает в себя первую. Последнее умозаключение означает, что если взять разность между этими суммами, и добавить к ней член a m (в случае взятия разности он вычитается из суммы S n), то получим необходимый ответ на задачу. Имеем: S mn = S n - S m + a m =n * (a 1 + a n) / 2 - m *(a 1 + a m)/2 + a m = a 1 * (n - m) / 2 + a n * n / 2 + a m * (1- m/2). В это выражение необходимо подставить формулы для a n и a m . Тогда получим: S mn = a 1 * (n - m) / 2 + n * (a 1 + (n - 1) * d) / 2 + (a 1 + (m - 1) * d) * (1 - m / 2) = a 1 * (n - m + 1) + d * n * (n - 1) / 2 + d *(3 * m - m 2 - 2) / 2.

Полученная формула является несколько громоздкой, тем не менее сумма S mn зависит только от n, m, a 1 и d. В нашем случае a 1 = 3, d = 4, n = 14, m = 8. Подставляя эти числа, получим: S mn = 301.

Как видно из приведенных решений, все задачи основываются на знании выражения для n-го члена и формулы для суммы набора первых слагаемых. Перед тем как приступить к решению любой из этих задач, рекомендуется внимательно прочитать условие, ясно понять, что требуется найти, и лишь затем приступать к решению.

Еще один совет заключается в стремлении к простоте, то есть если можно ответить на вопрос, не применяя сложные математические выкладки, то необходимо поступать именно так, поскольку в этом случае вероятность допустить ошибку меньше. Например, в примере арифметической прогрессии с решением №6 можно было бы остановиться на формуле S mn = n * (a 1 + a n) / 2 - m * (a 1 + a m) / 2 + a m , и разбить общую задачу на отдельные подзадачи (в данном случае сначала найти члены a n и a m).

Если возникают сомнения в полученном результате, то рекомендуется его проверять, как это было сделано в некоторых приведенных примерах. Как находить арифметическую прогрессию, выяснили. Если разобраться, то это не так сложно.

Прежде чем мы начнем решать задачи на арифметическую прогрессию , рассмотрим, что такое числовая последовательность, поскольку арифметическая прогрессия - это частный случай числовой последовательности.

Числовая последовательность - это числовое множество, каждый элемент которого имеет свой порядковый номер . Элементы этого множества называются членами последовательности. Порядковый номер элемента последовательности обозначается индексом:

Первый элемент последовательности;

Пятый элемент последовательности;

- "энный" элемент последовательности, т.е. элемент, "стоящий в очереди" под номером n.

Между значением элемента последовательности и его порядковым номером существует зависимость. Следовательно, мы можем рассматривать последовательность как функцию, аргументом которой является порядковый номер элемента последовательности. Другими словами можно сказать, что последовательность - это функция от натурального аргумента:

Последовательность можно задать тремя способами:

1 . Последовательность можно задать с помощью таблицы. В этом случае мы просто задаем значение каждого члена последовательности.

Например, Некто решил заняться личным тайм-менеджментом, и для начала посчитать в течение недели, сколько времени он проводит ВКонтакте. Записывая время в таблицу, он получит последовательность, состоящую из семи элементов:

В первой строке таблицы указан номер дня недели, во второй - время в минутах. Мы видим, что , то есть в понедельник Некто провел ВКонтакте 125 минут, , то есть в четверг - 248 минут, а , то есть в пятницу всего 15.

2 . Последовательность можно задать с помощью формулы n-го члена.

В этом случае зависимость значения элемента последовательности от его номера выражается напрямую в виде формулы.

Например, если , то

Чтобы найти значение элемента последовательности с заданным номером, мы номер элемента подставляем в формулу n-го члена.

То же самое мы делаем, если нужно найти значение функции, если известно значение аргумента. Мы значение аргумента подставляем вместо в уравнение функции:

Если, например, , то

Ещё раз замечу, что в последовательности, в отличие от произвольной числовой функции, аргументом может быть только натуральное число.

3 . Последовательность можно задать с помощью формулы, выражающей зависимость значения члена последовательности с номером n от значения предыдущих членов. В этом случае нам недостаточно знать только номер члена последовательности, чтобы найти его значение. Нам нужно задать первый член или несколько первых членов последовательности.

Например, рассмотрим последовательность ,

Мы можем находить значения членов последовательности один за другим , начиная с третьего:

То есть каждый раз, чтобы найти значение n-го члена последовательности, мы возвращаемся к двум предыдущим. Такой способ задания последовательности называется рекуррентным , от латинского слова recurro - возвращаться.

Теперь мы можем дать определение арифметической прогрессии. Арифметическая прогрессия - это простой частный случай числовой последовательности.

Арифметической прогрессией называется числовая последовательность, каждый член которой, начиная со второго, равен предыдущему, сложенному с одним и тем же числом.


Число называется разностью арифметической прогрессии . Разность арифметической прогрессии может быть положительной, отрицательной, или равной нулю.

Если title="d>0">, то каждый член арифметической прогрессии больше предыдущего, и прогрессия является возрастающей .

Например, 2; 5; 8; 11;...

Если , то каждый член арифметической прогрессии меньше предыдущего, и прогрессия является убывающей .

Например, 2; -1; -4; -7;...

Если , то все члены прогрессии равны одному и тому же числу, и прогрессия является стационарной .

Например, 2;2;2;2;...

Основное свойство арифметической прогрессии:

Посмотрим на рисунок.

Мы видим, что

, и в то же время

Сложив эти два равенства, получим:

.

Разделим обе части равенства на 2:

Итак, каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому двух соседних:

Больше того, так как

, и в то же время

, то

, и, следовательно,

Каждый член арифметической прогрессии, начиная с title="k>l">, равен среднему арифметическому двух равноотстоящих.

Формула го члена.

Мы видим, что для членов арифметической прогрессии выполняются соотношения:

и, наконец,

Мы получили формулу n-го члена.

ВАЖНО! Любой член арифметической прогрессии можно выразить через и . Зная первый член и разность арифметической прогрессии можно найти любой её член.

Сумма n членов арифметической прогрессии.

В произвольной арифметический прогрессии суммы членов, равноотстоящих от крайних равны между собой:

Рассмотрим арифметическую прогрессию, в которой n членов. Пусть сумма n членов этой прогрессии равна .

Расположим члены прогрессии сначала в порядке возрастания номеров, а затем в порядке убывания:

Сложим попарно:

Сумма в каждой скобке равна , число пар равно n.

Получаем:

Итак, сумму n членов арифметической прогрессии можно найти по формулам:

Рассмотрим решение задач на арифметическую прогрессию .

1 . Последовательность задана формулой n-го члена: . Докажите, что эта последовательность является арифметической прогрессией.

Докажем, что разность между двумя соседними членами последовательности равна одному и тому же числу.

Мы получили, что разность двух соседних членов последовательности не зависит от их номера и является константой. Следовательно, по определению, эта последовательность является арифметической прогрессией.

2 . Дана арифметическая прогрессия -31; -27;...

а) Найдите 31 член прогрессии.

б) Определите, входит ли в данную прогрессию число 41.

а) Мы видим, что ;

Запишем формулу n-го члена для нашей прогрессии.

В общем случае

В нашем случае , поэтому

Понятие числовой последовательности подразумевает соответствие каждому натуральному числу некоторого действительного значения. Такой ряд чисел может быть как произвольным, так и обладать определенными свойствами – прогрессия. В последнем случае каждый последующий элемент (член) последовательности можно вычислить с помощью предыдущего.

Арифметическая прогрессия – последовательность числовых значений, в которой ее соседние члены разнятся между собой на одинаковое число (подобным свойством обладают все элементы ряда, начиная со 2-ого). Данное число – разница между предыдущим и последующим членом – постоянно и называется разностью прогрессии.

Разность прогрессии: определение

Рассмотрим последовательность, состоящую из j значений A = a(1), a(2), a(3), a(4) … a(j), j принадлежит множеству натуральных чисел N. Арифметическая прогрессия, согласно своего определения, – последовательность, в которой a(3) – a(2) = a(4) – a(3) = a(5) – a(4) = … = a(j) – a(j-1) = d. Величина d – искомая разность данной прогрессии.

d = a(j) – a(j-1).

Выделяют:

  • Возрастающую прогрессию, в таком случае d > 0. Пример: 4, 8, 12, 16, 20, …
  • Убывающую прогрессию, тогда d < 0. Пример: 18, 13, 8, 3, -2, …

Разность прогрессии и ее произвольные элементы

Если известны 2 произвольных члена прогрессии (i-ый, k-ый), то установить разность для данной последовательности можно на базе соотношения:

a(i) = a(k) + (i – k)*d, значит d = (a(i) – a(k))/(i-k).

Разность прогрессии и ее первый член

Данное выражение поможет определить неизвестную величину лишь в случаях, когда известен номер элемента последовательности.

Разность прогрессии и ее сумма

Сумма прогрессии – это сумма ее членов. Для вычисления суммарного значения ее первых j элементов воспользуйтесь соответствующей формулой:

S(j) =((a(1) + a(j))/2)*j, но т.к. a(j) = a(1) + d(j – 1), то S(j) = ((a(1) + a(1) + d(j – 1))/2)*j=((2a(1) + d(– 1))/2)*j.

Арифметической прогрессией называют последовательность чисел (членов прогрессии)

В которой каждый последующий член отличается от предыдущего на сталое слагаемое, которое еще называют шагом или разницей прогрессии .

Таким образом, задавая шаг прогрессии и ее первый член можно найти любой ее элемент по формуле

Свойства арифметической прогрессии

1) Каждый член арифметической прогрессии, начиная со второго номера является средним арифметическим от предыдущего и следующего члена прогрессии

Обратное утверждение также верно. Если среднее арифметическое соседних нечетных (четных) членов прогрессии равно члену, который стоит между ними, то данная последовательность чисел является арифметической прогрессией. По этим утверждением очень просто проверить любую последовательность.

Также по свойству арифметической прогрессии, приведенную выше формулу можно обобщить до следующей

В этом легко убедиться, если расписать слагаемые справа от знака равенства

Ее часто применяют на практике для упрощения вычислений в задачах.

2) Сумма n первых членов арифметической прогрессии вычисляется по формуле

Запомните хорошо формулу суммы арифметической прогрессии, она незаменима при вычислениях и довольно часто встречается в простых жизненных ситуациях.

3) Если нужно найти не всю сумму, а часть последовательности начиная с k -го ее члена, то в Вам пригодится следующая формула суммы

4) Практический интерес представляет отыскание суммы n членов арифметической прогрессии начиная с k -го номера. Для этого используйте формулу

На этом теоретический материал заканчивается и переходим к решению распространенных на практике задач.

Пример 1. Найти сороковой член арифметической прогрессии 4;7;...

Решение:

Согласно условию имеем

Определим шаг прогрессии

По известной формуле находим сороковой член прогрессии

Пример2. Арифметическая прогрессия задана третьим и седьмым ее членом . Найти первый член прогрессии и сумму десяти.

Решение:

Распишем заданные элементы прогрессии по формулам

От второго уравнения вычтем первое, в результате найдем шаг прогрессии

Найденное значение подставляем в любое из уравнений для отыскания первого члена арифметической прогрессии

Вычисляем сумму первых десяти членов прогрессии

Не применяя сложных вычислений ми нашли все искомые величины.

Пример 3. Арифметическую прогрессию задано знаменателем и одним из ее членов . Найти первый член прогрессии, сумму 50 ее членов начиная с 50 и сумму 100 первых.

Решение:

Запишем формулу сотого элемента прогрессии

и найдем первый

На основе первого находим 50 член прогрессии

Находим сумму части прогрессии

и сумму первых 100

Сумма прогрессии равна 250.

Пример 4.

Найти число членов арифметической прогрессии, если:

а3-а1=8, а2+а4=14, Sn=111.

Решение:

Запишем уравнения через первый член и шаг прогрессии и определим их

Полученные значения подставляем в формулу суммы для определения количества членов в сумме

Выполняем упрощения

и решаем квадратное уравнение

Из найденных двух значений условии задачи подходит только число 8 . Таким образом сумма первых восьми членов прогрессии составляет 111.

Пример 5.

Решить уравнение

1+3+5+...+х=307.

Решение: Данное уравнение является суммой арифметической прогрессии. Выпишем первый ее член и найдем разницу прогрессии

Калькулятор онлайн.
Решение арифметической прогрессии.
Дано: a n , d, n
Найти: a 1

Эта математическая программа находит \(a_1\) арифметической прогрессии, исходя из заданных пользователем чисел \(a_n, d \) и \(n \).
Числа \(a_n\) и \(d \) можно задать не только целые, но и дробные. Причём, дробное число можно ввести в виде десятичной дроби (\(2,5 \)) и в виде обыкновенной дроби (\(-5\frac{2}{7} \)).

Программа не только даёт ответ задачи, но и отображает процесс нахождения решения.

Этот калькулятор онлайн может быть полезен учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Если вы не знакомы с правилами ввода чисел, рекомендуем с ними ознакомиться.

Правила ввода чисел

Числа \(a_n\) и \(d \) можно задать не только целые, но и дробные.
Число \(n \) может быть только целым положительным.

Правила ввода десятичных дробей.
Целая и дробная часть в десятичных дробях может разделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так 2.5 или так 2,5

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Ввод:
Результат: \(-\frac{2}{3} \)

Целая часть отделяется от дроби знаком амперсанд: &
Ввод:
Результат: \(-1\frac{2}{3} \)

Введите числа a n , d, n


Найти a 1

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

У вас в браузере отключено выполнение JavaScript.
Чтобы решение появилось нужно включить JavaScript.
Вот инструкции, как включить JavaScript в вашем браузере .

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек...


Если вы заметили ошибку в решении , то об этом вы можете написать в Форме обратной связи .
Не забудте указать какую задачу вы решаете и что вводите в поля .



Наши игры, головоломки, эмуляторы:

Немного теории.

Числовая последовательность

В повседневной практике часто используется нумерация различных предметов, чтобы указать порядок их расположения. Например, дома на каждой улице нумеруются. В библиотеке нумеруются читательские абонементы и затем располагаются в порядке присвоенных номеров в специальных картотеках.

В сберегательном банке по номеру лицевого счёта вкладчика можно легко найти этот счёт и посмотреть, какой вклад на нём лежит. Пусть на счёте № 1 лежит вклад а1 рублей, на счёте № 2 лежит вклад а2 рублей и т. д. Получается числовая последовательность
a 1 , a 2 , a 3 , ..., a N
где N - число всех счетов. Здесь каждому натуральному числу n от 1 до N поставлено в соответствие число a n .

В математике также изучаются бесконечные числовые последовательности:
a 1 , a 2 , a 3 , ..., a n , ... .
Число a 1 называют первым членом последовательности , число a 2 - вторым членом последовательности , число a 3 - третьим членом последовательности и т. д.
Число a n называют n-м (энным) членом последовательности , а натуральное число n - его номером .

Например, в последовательности квадратов натуральных чисел 1, 4, 9, 16, 25, ..., n 2 , (n + 1) 2 , ... а 1 = 1 - первый член последовательности; а n = n 2 является n-м членом последовательности; a n+1 = (n + 1) 2 является (n + 1)-м (эн плюс первым) членом последовательности. Часто последовательность можно задать формулой её n-го члена. Например, формулой \(a_n=\frac{1}{n}, \; n \in \mathbb{N} \) задана последовательность \(1, \; \frac{1}{2} , \; \frac{1}{3} , \; \frac{1}{4} , \dots,\frac{1}{n} , \dots \)

Арифметическая прогрессия

Продолжительность года приблизительно равна 365 суткам. Более точное значение равно \(365\frac{1}{4} \) суток, поэтому каждые четыре года накапливается погрешность, равная одним суткам.

Для учёта этой погрешности к каждому четвёртому году добавляются сутки, и удлинённый год называют високосным.

Например, в третьем тысячелетии високосными годами являются годы 2004, 2008, 2012, 2016, ... .

В этой последовательности каждый её член, начиная со второго, равен предыдущему, сложенному с одним и тем же числом 4. Такие последовательности называют арифметическими прогрессиями .

Определение.
Числовая последовательность a 1 , a 2 , a 3 , ..., a n , ... называется арифметической прогрессией , если для всех натуральных n выполняется равенство
\(a_{n+1} = a_n+d, \)
где d - некоторое число.

Из этой формулы следует, что a n+1 - a n = d. Число d называют разностью арифметической прогрессии .

По определению арифметической прогрессии имеем:
\(a_{n+1}=a_n+d, \quad a_{n-1}=a_n-d, \)
откуда
\(a_n= \frac{a_{n-1} +a_{n+1}}{2} \), где \(n>1 \)

Таким образом, каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому двух соседних с ним членов. Этим объясняется название «арифметическая» прогрессия.

Отметим, что если a 1 и d заданы, то остальные члены арифметической прогрессии можно вычислить по рекуррентной формуле a n+1 = a n + d. Таким способом нетрудно вычислить несколько первых членов прогрессии, однако, например, для a 100 уже потребуется много вычислений. Обычно для этого используется формула n-го члена. По определению арифметической прогрессии
\(a_2=a_1+d, \)
\(a_3=a_2+d=a_1+2d, \)
\(a_4=a_3+d=a_1+3d \)
и т.д.
Вообще,
\(a_n=a_1+(n-1)d, \)
так как n-й член арифметической прогрессии получается из первого члена прибавлением (n-1) раз числа d.
Эту формулу называют формулой n-го члена арифметической прогрессии .

Сумма n первых членов арифметической прогрессии

Найдём сумму всех натуральных чисел от 1 до 100.
Запишем эту сумму двумя способами:
S = l + 2 + 3 + ... + 99 + 100,
S = 100 + 99 + 98 + ... + 2 + 1.
Сложим почленно эти равенства:
2S = 101 + 101 + 101 + ... + 101 + 101.
В этой сумме 100 слагаемых
Следовательно, 2S = 101 * 100, откуда S = 101 * 50 = 5050.

Рассмотрим теперь произвольную арифметическую прогрессию
a 1 , a 2 , a 3 , ..., a n , ...
Пусть S n - сумма n первых членов этой прогрессии:
S n = a 1 , a 2 , a 3 , ..., a n
Тогда сумма n первых членов арифметической прогрессии равна
\(S_n = n \cdot \frac{a_1+a_n}{2} \)

Так как \(a_n=a_1+(n-1)d \), то заменив в этой формуле a n получим еще одну формулу для нахождения суммы n первых членов арифметической прогрессии :
\(S_n = n \cdot \frac{2a_1+(n-1)d}{2} \)

Книги (учебники) Рефераты ЕГЭ и ОГЭ тесты онлайн Игры, головоломки Построение графиков функций Орфографический словарь русского языка Словарь молодежного слэнга Каталог школ России Каталог ССУЗов России Каталог ВУЗов России Список задач