Двойной винт. Разъемные соединения (продолжение). Изделие изготовляется в единственном исполнении

0

Винты могут быть тянущими и толкающими. Винты первого типа устанавливаются впереди фюзеляжа и крыла, винты второго типа - в их хвостовой части. Из соображений компоновки преобладающее использование получили тянущие винты. При выборе типа винта приходится учитывать и то, что отлетающие кусочки льда при обледенении самолета могут повредить лопасти винта, расположенного за крылом и фюзеляжем.

На двигателях большой Мощности выгодно бывает установить два винта, вращающихся в разные стороны. Такие винты называют соосными.


Применение соосных винтов позволяет не только спять большую мощность с вала двигателя, но за счет уменьшения потерь на закручивание воздушного потока получить несколько больший к. п. д. по сравнению с одиночным винтом.

Помимо этого, соосные винты, вращаясь в разные стороны, почти не создают реактивного момента, что весьма важно для обеспечения поперечного равновесия самолета.

Наиболее простым типом является винт фиксированного шага (ВФШ), у которого втулка и лопасти являются органически целыми. Материалом для изготовления таких винтов чаще всего служит древесина. Подобные винты в настоящее время применяют только на легких самолетах. Так как у ВФШ установочный угол в полете не изменяется, то подобный винт будет выгодным лишь при полете на весьма ограниченном диапазоне скоростей. В остальных случаях к. п. д. винта невысок.

Винты, у которых угол установки лопастей можно изменять в полете, называются винтами изменяемого шага (ВПШ). Лопасти у таких винтов относительно своих продольных осей автоматически или по воле летчика могут поворачиваться, изменяя угол установки.

Для уменьшения лобового сопротивления при отказе двигателя в полете применяют флюгерные винты изменяемого шага, лопасти которых с помощью специального привода по воле летчика устанавливаются в положение наименьшего сопротивления при остановленном винте. Это достигается при угле установки лопастей 83-85°.

Широкое применение в последние годы получили тормозные или реверсивные винты. Реверсивные винты - это ВПШ с приспособлениями, позволяющими устанавливать лопасти таким образом, что винт при вращении развивает отрицательную тягу. Наличие отрицательной тяги позволяет сократить длину послепосадочного пробега, увеличить угол планирования, повысить маневренность самолета при движении на земле.

Изменение угла установки лопастей у ВПШ может производиться механическим, гидравлическим и электрическим приводами.

Механическим винтом называется такой винт, у которого поворот лопастей на тот или иной угол осуществляется либо пилотом, либо теми силами, которые возникают при работе винта и изменяются при изменении режима работы. Иногда такие винты называются аэромеханическими. Они широко применяются на легких самолетах.

У гидравлических винтов изменяемого шага угол установки лопастей изменяется при помощи гидравлического двигателя под действием давления масла. Давление создается насосом, приводимым во вращение авиационным двигателем. Для питания насоса используется масло, идущее на смазку двигателя (неавтономный винт), а также масло, не входящее в систему смазки двигателя (автономный винт).

Изменение угла установки лопастей может производиться поршневым или шестеренчатым гидравлическим двигателем. Шестеренчатый двигатель может быть один на винт или по одному на каждую лопасть.


В том и в другом случаях вращательное движение гидравлического двигателя с помощью механической передачи осуществляет поворот лопастей.

Передача от подвижного элемента поршневого двигателя на лопасть осуществляется двумя способами:

поршень передает движение обойме - траверсе или поводку, связанному с эксцентрично установленным пальцем на лопасти или стакане, в котором крепится лопасть (рис. 114). Иногда поршень со стаканом лопасти связаны при помощи шатунов;

поршень, двигаясь поступательно, передвигает палец, установленный в винтовом вырезе обоймы. Палец, двигаясь по вырезу в обойме, поворачивает ее. Это движение передается лопастям через коническую зубчатую передачу.

Гидравлические винты могут быть выполнены по обратной, прямой и двойной схемам.

Винтом обратной схемы называется винт, у которого лопасти поворачиваются на малый шаг под действием момента поперечных составляющих центробежных сил лопастей Мцб, а на большой шаг - под действием момента М мех, создаваемого гидравлическим механизмом (рис. 114, а). При прекращении подачи масла или нарушении герметичности системы лопасти винта поворачиваются на минимальный шаг под действием указанных центробежных сил. Как следствие этого, в полете произойдет раскрутка двигателя, т. е. число, оборотов резко повысится свыше максимально допустимого. Пилот Должен будет выключить двигатель во избежание его разрушения.

Винтом прямой схемы называется винт, у которого лопасти поворачиваются на малый шаг под действием момента М мех, создаваемого гидравлическим механизмом, а на большой шаг - под действием разности моментов центробежных сил противовесов М пр центробежных сил лопастей М цб (рис. 114, б). При прекращении подачи масла лопасти такого винта устанавливаются на максимальный (рабочий) шаг. Для винтов прямой схемы раскрутка не опасна.

Вес таких винтов больше веса винтов обратной схемы, но преимуществом его является возможность получения некоторой мощности (до 70% максимальной) при прекращении подачи масла к винту.

Винтом двойной схемы называют такой винт, лопасти которого на малый шаг устанавливают под действием момента М мех создаваемого гидравлическим механизмом, и момента центробежных сил лопастей М цб, а на большой шаг - только при помощи гидравлического механизма (рис. 114, в).

Для предупреждения поворота лопастей винта двойной схемы на малый шаг при отказе системы подачи масла предусмотрен механизм, называемый фиксатором шага. В случае прекращения подачи масла фиксатор шага запирает масло в полости большого шага цилиндровой группы винта, фиксируя лопасти на том шаге, на котором находилась лопасть в момент аварии. Фиксатор шага может быть установлен и на винте обратной схемы, но только при двухканальном подводе масла к винту.

Электрические винты изменяемого шага. Лопасти этих винтов поворачиваются на нужный угол при помощи электродвигателей. На одном винте может быть установлен один электродвигатель или несколько (по числу лопастей); в последнем случае для синхронизации поворота лопасти связывают механически. У некоторых винтов электродвигатель установлен на авиационном двигателе, и движение лопастям передается при помощи дифференциальной зубчатой передачи. Электродвигатели выбираются всегда реверсивные, так как лопасти должны поворачиваться в обе стороны. Питание электрическим током двигатели получают от общей сети самолета. Электродвигатели, приводящие в действие лопасти винта, снабжаются концевыми выключателями, которые отключают двигатели в момент, когда лопасти повернутся на предельный малый или большой шаг.

Используемая литература: "Основы авиации" авторы: Г.А. Никитин, Е.А. Баканов

Скачать реферат: У вас нет доступа к скачиванию файлов с нашего сервера.

Многие читатели, строящие аэросани и глиссеры с воздушными винтами, в своих письмах в редакцию просят рассказать, как устроены винты изменяемого шага и какими преимуществами они обладают. Выполняя эту просьбу, публикуем материал, подготовленный консультантом общественного КБ «М-К» по снегоходной технике И. Н. Ювенальевым.

Тяговое усилие, развиваемое любым винтом, зависит от его диаметра, скорости вращения, угла атаки лопастей по отношению к плоскости вращения и от профиля поперечного сечения лопасти, создающего подъемную силу. Вот пример.

Поместим в воздушный поток иод некоторым углом атаки плоскую пластинку (рис. 1А). Набегающий поток давит на ее нижнюю поверхность с силой Р1. Одновременно на верхней поверхности из-за несимметричности обтекания воздушный поток завихряется, возникает разрежение, создающее силу Р2. Эти силы направлены в одну сторону, действуют перпендикулярно плоскости пластины и приложены в ее геометрическом центре. Они могут быть заменены одной - равнодействующей силой Р. Если же последнюю разложить на вертикальную и горизонтальную составляющие, то получим соответственно подъемную силу Т (или тягу) и силу сопротивления воздуха X.

Величина интересующей нас силы Т зависит от угла атаки и скорости, с которой пластина движется в потоке.

Если рассматривать соотношение сил Т и X в зависимости от угла атаки при постоянной скорости, то окажется, что сопротивление постепенно увеличивается и достигает максимума при вертикальном положении пластины. Сила же тяги сначала растет (до наивыгоднейшего для данной скорости движения угла атаки), а затем резко уменьшается. Следовательно, для каждой скорости может быть только одни наивыгоднейший угол атаки.

V - скорость набегающего потока, X - сила сопротивления воздуха, а - угол атаки, Р1 - сила давления, Р2 - сила разрежения, Р - равнодействующая, Т - сила тяги, нлн подъемная сила, I 2 - длина верхней части профиля, I 1 - длина нижней части.

А - деревянный блочный, Б - металлический блочный, В - винт с установкой лопастей на месте с контровочной гайкой, Г - винт с разрезной втулкой и стяжными хомутами.

1 - втулка, 2 - лопасть, 3 - контргайка, 4 - стяжной хомут, 5 - болт с гайкой.

1 - промежуточная качалка, 2 - ось, 3 - скользящая муфта, 4 - тяга управления, 5 - рычаг лопасти, 6 - гайка крепления втулки, 7 - втулка винта, 8 - противовес, 9 - лопасть, 10 - шарнир тяги, 11 - приводной вал, 12 - рычаг управления изменением шага винта в кабине водителя, 13 - фиксатор рычага управления, 14 - зубчатый сектор, 15 - тяга.

А - ход муфты, Б - ход рычагов лопасти, В - ход промежуточной качалки, Г - ручка в положении малого шага, Д - ручка в положении большого шага, Е - ручка в положении реверса.

Если пластина не плоская, а выполнена в виде аэродинамического профиля (см. рис. 1Б), то в зависимости от его формы величина подъемной силы при прочих равных условиях значительно возрастает. Аэродинамический профиль более выгоден, чем прямая пластина. Скорость обтекания его верхнего и нижнего обводов различны, а следовательно, неоднозначно и давление. Поэтому такой профиль даже при нулевом угле атаки создает подъемную силу. В то же время сопротивление его меньше, чем у прямой пластины такой I толщины.

Важным параметром, определяющие назначение воздушного винта, является величина его шага (Н). Шаг определяется по углу атаки поперечного сечения лопасти, расположенного на 0,75 радиуса винта. Выражается Н расстоянием, которое проходит винт за один полный оборот. Винт образно можна сравнить с гайкой, наворачиваемой на болт. Расстояние, которое гайка проходит по резьбе за один полный оборот есть шаг. Он определяется по формуле:

Н = 1,5 ПR tgα,

где: R - радиус винта, α - угол атаки (установки) профиля.

Но болт и гайка - твердые тела. Воздушный же винт вращается в сжимаемой среде, имеющей малую плотность. При этом он проскальзывает продвигается вперед на значительно меньшее расстояние, чем его расчетный шаг.

Чем больше нагрузка на винт, больше величина скольжения и больше фактический шаг винта. Фактический шаг определяет нагрузку на приводной двигатель и влияет на экономичность.

Применение винтов изменяемого шага позволяет получить наибольший коэффициент полезного действия (КПД), а следовательно, и наибольшую тягу. Правда, только на одном, соответствующем этому шагу, расчетном режиме. Конструкторы аэросаней чаще всего изготавливают воздушные винты блочными, выполненными из цельного или склеенного деревянного бруса (рис. 2). Подобный винт можно сделать и из металла.

На практике в зависимости от дорожных условий желательно варьировать величину шага. При движении с места надо получить максимальную тягу (шаг винта при этом должен быть малым), а с увеличением скорости шаг надо увеличивать.

На рисунке изображены винты с шагом, изменяемым на месте. Такие винты получили большое распространение на самодельных аэросанях. Они могут быть двух-, трех- и четырехлопастными. Втулка и лопасти делаются отдельно. Втулка из стали или дюралюминия снабжается посадочным конусом со шпоночной канавкой для установки на приводной вал двигателя и имеет гнезда под лопасти винта. Гнезда могут быть резьбовыми (рис. 2В) или с проточенными кольцевыми канавками, если втулка разъемная (рис. 2 Г). Число гнезд соответствует количеству лопастей. Лопасти изготавливаются из дерева, пластика с усиленной комлевой частью или из металла. Если они крепятся на резьбе, то комлевая часть заканчивается резьбовым хвостовиком.

Для точной установки лопастей на нужный угол атаки на их хвостовики наносят контрольные риски, а на торцевой части каждого гнезда во втулке по транспортиру градуируют шкалу углов в нужном для данного винта диапазоне, например: от 3°-5° до 25°-30°. При сборке все лопасти устанавливаются на одинаковый угол и контрятся гайками.

Имея такой винт, водитель может в зависимости от предполагаемого режима работы аэросаней заранее установить лопасти на нужный угол атаки.

Удобнее иметь винт с изменяемым во время движения шагом. Их можно разделить на два типа: двухдиапазонные, которые могут по желанию водителя устанавливаться в два предельных положения - «малый» или «большой шаг», и с принудительной установкой лопастей на нужный шаг во всем диапазоне. Изменение шага осуществляется механическим приводом. Несмотря на большое разнообразие конструкций, все они в основном сводятся к принципиальной схеме, изображенной на рисунке 3.

В этой схеме винт имеет металлическую втулку с гнездами, в которые на шарикоподшипниках устанавливаются попасти. На комлевой части каждой лопасти есть рычаг, соединенный тягой со скользящей по приводному валу муфтой. При перемещении муфта поворачивает тяги лопасти, переводя их с большого шага на малый. Продвигаясь дальше, муфта может установить лопасти в положение реверса, то есть создать винтом обратную тягу для торможения саней.

Скользящая муфта перемещается по валу специальным рычагом из кабины водителя. Для фиксации рычага в нужном положении имеется зубчатый сектор. От рычага тягой или тросом усилие передается на промежуточную качалку, которая и передвигает скользящую муфту но приводному валу. Обычно управление изменением шага одностороннее - перевод лопастей возможен только в одну сторону: с большого шага на малый и в положение реверса. На большой шаг винт переходит сам под действием аэродинамических сил и моментов, создаваемых противовесами, установленными на комлевых частях лопастей.

Оригинально выполнен винт АВ-6 на двухместных аэросанях К-36 конструкции Н. И. Камова (рис. 4). Его лопасти поворачиваются траверсой, расположенной внутри вала редуктора. На комлевых частях лопастей вместо рычагов установлены штыри с надетыми на них сухарями, входящими в прорези траверсы.

1 - корпус втулки винта, 2, 6 - болт, 3, 7 - контровочная шайба, 4 - гайка, 5 - крышка, 8 - траверса, 9 - упорное кольцо реверса, 10 - шпонка, 11 - шплинт, 12 - гайка, 13 - шайба, 14 - противовес, 15 - болт противовеса, 16 - лопасть, 17 - балансировочный груз, 18 - глухая шайба, 19 - крепежная разрезная шайба, 20 - уплотнительная манжета, 21 - сепаратор, 22 - шарики, 23 - сухарь, 24 - стакан лопасти, 25 - контровочная втулка, 26 - стопорное кольцо, 27 - винт натяга, 28 - пята, 29 - дно стакана, 30 - шпонка противовеса.

1 - тяга управления, 2 - рычаг, 3 - скользящая муфта, 4 - траверса, 5 - лопасть, 6 - противовес; А - положение лопасти «большой шаг», Б - «малый шаг», В - реверс.

АВ-6 - металлический, двухлопастный, толкающий, правого вращения (если смотреть в направлении движения) винт. Работает от двигателя МТ-8 мощностью 38-40 л. с. через редуктор. Частота вращения 2630 об/мин, Ø1600 мм.

По типу он - центробежно-механический, реверсивный, с фиксацией лопастей на прямой передаче 8°30′, на реверсе - 19° 30′, то есть рабочий диапазон их хода - 11°. Углы поворота лопастей замеряются на радиусе 600 мм.

Конструктивно винт состоит из стальной втулки и двух дюралюминиевых лопастей. Втулка устанавливается на фланец редуктора. Для крепления лопастей во втулке сделаны два гнезда, в которые вставлены специальные стаканы. Последние поворачиваются в сепараторах с шариками. Зазоры устраняются специальным винтом натяга. Лопасти поворачиваются траверсой, передвигающейся на шпонке внутри вала редуктора. На торцах лопастных стаканов эксцентрично расположены пальцы с надетыми на них сухарями, скользящими в прорезях траверсы.

Траверса передвигается в продольном направлении тягой, соединенной со скользящей муфтой, которая, в свои очередь, соединена тягой с рычагов управления (рис. 5). На выходящих иг втулки концах стаканов с лопастями установлены противовесы - центробежные грузы. Они располагаются под углом 20° ±1° и закреплены на шпонках.

Винт работает по прямой схеме: под действием центробежных моментов, создаваемых противовесами, лопасти автоматически устанавливаются на шаг необходимый для данного режима движения. Перевод лопастей в реверсное положение осуществляется принудительно специальным рычагом, расположенным в кабине водителя Выгодный КПД винта сохраняется во всем диапазон работ.

Заметили ошибку? Выделите ее и нажмите Ctrl+Enter , чтобы сообщить нам.

Есть занятия, которым можно предаваться, не сожалея о потраченном времени и с пользой для ума. Например, разглядывать чертежи и наброски Леонардо да Винчи — «живые зарисовки» его оригинальных замыслов и проектов, которым, кажется, нет числа.

В рисунках мастера легко распознаются привычные нам (а для людей эпохи Возрождения — инновационные) изобретения: от водных лыж и костюма водолаза до парашюта и планера. Многие его замыслы остались «в проекте»: в виде изображений на бумаге всевозможных механизмов, приспособлений и построек. Эти рисунки — надёжное хранилище авторских идей и изысканий. Они позволяют заглянуть в творческую лабораторию да Винчи, познакомиться с его методом работы и проследить за ходом мысли, за тем, как он ставил и решал шаг за шагом сложные технические, строительные и прочие задачи.

В кругу идей

История открытий и изобретений свидетельствует о том, что полезные идеи рано или поздно доводятся до ума и претворяются в жизнь. Яркий пример того, как это происходит, — научно-техническое творчество Леонардо да Винчи. Прирождённый исследователь и изобретатель, он работал прежде всего с идеями: одни генерировал сам, другие заимствовал и развивал, при этом всегда искал им практическое применение.

Сперва Леонардо составлял план решения: делал набросок будущей конструкции, отражающий общую идею. Затем пристально изучал детали, рисовал эскизы и снабжал их комментариями. И наконец, собирал все части в единое целое — готовую полноценную иллюстрацию. Как заметил один из исследователей творчества художника, многие его наброски представляют собой «незаконченные мысли о способах и средствах». Действительно, изучая эти чертежи и рисунки, иногда приходится додумывать отсутствующие или намеренно опущенные да Винчи детали и подробности. Но есть среди них настолько выверенные и точные, что даже спустя пять столетий их язык понятен без слов. По чертежам, оставленным в наследство будущим поколениям гениальным конструктором и изобретателем, современные умельцы смогли изготовить действующие модели различных устройств.

Чудо-лестница

Перед вами эскиз крепостной башни

Слева от неё схема одной из важных деталей постройки — винтовой лестницы. Её конструкция напоминает знаменитый винт Архимеда, только ступенек не хватает! Приглядитесь к рисунку, и вы раскроете поразительный замысел Леонардо-архитектора. Его лестница двойная: по одной её части можно подниматься на башню, а по другой — спускаться, не сталкиваясь и даже не видя друг друга. Траектории обеих частей лестницы — непересекающиеся винтовые линии (пространственные кривые, закручивающиеся вокруг вертикальной опоры — круглого столба в центре конструкции). У каждой части лестницы есть свои вход и выход, а её моделью служит винтовая поверхность, так называемый геликоид. У настоящей лестницы вокруг столба веерообразно закручиваются ступеньки.

Двойная винтовая лестница украшает королевский замок Шамбор во Франци. Его строительство началось в 1519 году, вскоре после кончины Леонардо. Как известно, последние годы жизни он провёл в этой стране, при дворе Франциска I, своего покровителя, и был Первым королевским художником, инженером и архитектором. Принимал ли Леонардо участие в проектировании грандиозного по своим масштабам замка, достоверно неизвестно. Даже если нет, считают специалисты, его создатели использовали идеи да Винчи из рисунков художника. Вполне вероятно, что на выбор архитекторов повлиял его набросок, сделанный ещё в конце 1480-х годов. Всего в Шамборе 77 лестниц, в том числе несколько винтовых, но только эта стала его настоящей достопримечательностью.

Известны и другие двойные винтовые лестницы. Самые ранние из них возводились в европейских соборах ещё в XIV—XV веках, но они уступают лестнице в замке Шамбор не только в размере и декоре, но и в простоте и оригинальности конструкции — полностью изолировать части двойной винтовой лестницы друг от друга до Леонардо никому не удавалось или не приходило в голову.

В 1527 году ту же идею применил итальянский архитектор Антонио да Сангалло Младший. По приказу папы Климента VII он начал строительство огромной водовозной башни — колодца Святого Патрика (фото вверху) — в городе Орвието на случай его осады и лишения доступа к внешним источникам воды. Здесь доступ к воде на дне колодца обеспечивали два противоположных входа, которые вели на автономные винтовые лестницы: по одной повозки спускали за водой, а по другой доставляли её наверх. Освещение постройки было естественным: свет проникал внутрь через множество арочных окон в стенах башни.

Воплощение идеи винтового движения

У Леонардо да Винчи есть и более сложные архитектурные композиции из лестниц. Одна из них походит на трёхмерный лабиринт со множеством входов и выходов. Взгляните на следующий набросок

Вы видите сразу четыре не связанные одна с другой наружные лестницы, «закручивающиеся» вокруг массивного квадратного столба, в котором, быть может, скрыто какое-то подъёмное устройство. С удивительной лёгкостью художник соединяет архитектуру и геометрию пространства, сочетает линии и формы и создаёт законченные образы и самодостаточные конструкции.

Да Винчи нашёл ещё одно интересное применение двойной винтовой линии. Он использовал её в конструкции аппарата для дыхания под водой.

Это усовершенствованный вариант дыхательной трубки, которой пользовались ещё древние ныряльщики. Аппарат состоит из поплавка с защитным плавучим куполом, маски, шлангов для дыхания и клапана, который контролирует их работу, предотвращая попадание воды внутрь. Шланг сделан из нескольких тростниковых трубок, соединённых вставками из непромокаемого материала, а внутри него находятся двойные пружины — компактный упругий элемент, который, с одной стороны, не даёт материалу сжаться и потерять форму, а с другой — делает шланг гибким.

Секрет полёта

Леонардо одним из первых использовал винтовую поверхность в конструкции воздушного винта — главной детали, при помощи которой летательная машина могла бы подняться вертикально в воздух, если бы удалось как следует раскрутить винт, а заодно справиться с его неустойчивостью при подъёме. Речь идёт о сложном винтовом движении (поворот вокруг фиксированной оси и параллельный перенос вдоль неё, выполненные одновременно), но уже применительно к механике полёта.

Воздушный винт Леонардо да Винчи считают прототипом современного несущего винта, а его самого —изобретателем геликоптера, или, как его называют в России, — вертолёта. Кстати, слово «геликоптер» родственно слову «геликоид» и происходит от слов греческого языка ëλικου (спираль, винт) и πτεoóν (крыло). Появилось оно только в 1860-е годы, почти через четыре столетия после того, как был сделал этот рисунок.

Да Винчи вполне мог позаимствовать идею «запуска» для своей кон-струкции у «летающей вертушки» — игрушки родом из Древнего Китая. Это был стержень с винтом из птичьих перьев на конце. Его раскручивали руками или с помощью намотанной на стержень нити и отпускали. Современный вариант — примитивный вертолёт «муха», его легко смастерить самим.

А вот форму воздушного винта да Винчи мог выбрать, наблюдая за вращением винта Архимеда.

Леонардо-инженер, вообще, не раз пытался приспособить это хитроумное изобретение древнегреческого учёного к разным механизмам. Например, использовал его как деталь гидравлической машины. Или же в качестве элементов вечного двигателя (это была конструкция из двух винтов разного диаметра: по одному вода поднималась, а по другому опускалась на исходный уровень). Но потом Леонардо отказался от этой бесплодной затеи и придумал для винта Архимеда более интересное и полезное применение.

Леонардо не рассматривал свою конструкцию как летательный аппарат, но исследовал механизм её работы. Секрет полёта он искал в природе, которая создаёт оптимальные формы, выполняющие те или иные функции: подолгу наблюдал за «живыми машинами» — свободно парящими в небе птицами, описывал их движения. В его зарисовках есть траектория поднимающейся ввысь птицы, представляющая собой винтообразную кривую.

Аппараты, снабжённые искусственными крыльями и способные подняться в воздух за счёт мускульной силы человека (орнитоптеры, или махолёты), — вот что занимало Леонардо больше всего (кстати, первым попытался реализовать эту идею искусный мастер Дедал, герой античной мифологии). Да Винчи не раз возвращался к решению данной задачи. Безуспешно. В итоге он решил воспроизвести самый простой способ полёта птиц — придумал планер, парящий за счёт воздушных потоков. Исследуя проблему полёта, он интересовался буквально всем, даже такой мелочью, как звук, производимый крыльями мухи! И в этом был, кажется, весь Леонардо — величайший гений эпохи Возрождения, «самый ненасытно любопытный человек всех времён», как заметил один из его биографов.

Мечты сбываются

Воздушный винт, которому Леонардо придал форму геликоида, упоминается в его знаменитом трактате «О летании». Согласно описанию, винт должен иметь металлическую окантовку и полотняное покрытие, а каркасом полотну послужат тонкие длинные трубки. И далее да Винчи добавляет: «Можно сделать себе маленькую модель из бумаги, ось которой, из тонкого листового железа, закручиваемая с силой и которая будучи отпущена, приводит во вращение винт». Ну а дальше додумывайте сами... Судя по деталям конструкции, винт могли вращать с помощью приделанных к оси рычагов. Или «запускать» его мог пружинный механизм. А что такое пружина? Да та же винтовая линия, выполненная в металле, способная накапливать и отдавать энергию.

Рисунок воздушного винта — один из самых известных в коллекции работ Леонардо, посвящённых проблеме полёта. Его изучали и любители и специалисты: учёные, конструкторы, инженеры, изобретатели. Ни одна из построенных ими моделей так и не смогла сама, без двигателя, подняться в воздух. Но куда важнее другое. Набросок да Винчи заключал в себе бесценную идею и спустя столетия другие изобретатели и учёные создали настоящий летательный аппарат.

Вообще, на счету Леонардо множество самых разных полезных изобретений, в его время невостребованных, надолго позабытых и потом придуманных заново.

Подробности для любознательных

Винтовая линия и геликоид

Винтовая линия — кривая, которую описывает точка, движущаяся с постоянной скоростью по образующей цилиндра, когда та равномерно вращается вокруг его оси. Эта кривая пересекает все образующие под равными углами. Если на листе бумаги провести под углом к его большей стороне несколько параллельных прямых на одинаковом расстоянии друг от друга, а затем свернуть бумагу в цилиндр, соединив две меньшие стороны, то на его поверхности мы увидим винтовую линию: правую, если при взгляде снизу она закручивается против часовой стрелки, или левую — если закручивается в обратную сторону.

Когда вращение вокруг неподвижной оси с одновременным переносом вдоль неё совершает не точка, а линия, она описывает в пространстве винтовую поверхность. Так, отрезок, скользящий одним концом по винтовой линии, а другим — по оси цилиндра, описывает геликоид (от греч. ελικος — спираль, извилина).

Цилиндрическая винтовая линия может перемещаться вдоль самой себя. Она определяет кратчайший путь между двумя точками разных образующих на поверхности цилиндра. Аналогичными свойствами обладает геликоид. Он скользит сам по себе и имеет минимальную площадь при заданной внешней границе. Простота, гибкость, динамичность, «экономичность» — благодаря этим свойствам винтовые формы распространены в природе (вспомним хотя бы «двойную спираль» молекулы ДНК и вьющиеся растения) и широко применяются на практике, особенно в технике (от пружины и штопора — до шнека мясорубки и гребного винта).

***
Несущий винт — воздушный винт с вертикальной осью вращения — источник подъёмной силы вертолёта. С его помощью осуществляются управление полётом и посадка аппарата. Идея использования для полётов вращающегося винта возникла ещё в глубокой древности и была популярна в Европе в Средние века. Сама конструкция имела «лопасти» и походила на пропеллер.