Чему равен логарифм 3. Что такое логарифм

Логарифмом числа N по основаниюа называется показатель степених , в которую нужно возвестиа , чтобы получить числоN

При условии, что
,
,

Из определения логарифма следует, что
, т.е.
- это равенство является основным логарифмическим тождеством.

Логарифмы по основанию 10 называются десятичными логарифмами. Вместо
пишут
.

Логарифмы по основанию e называются натуральными и обозначаются
.

Основные свойства логарифмов.

    Логарифм единицы при любом основании равен нулю

    Логарифм произведения равен сумме логарифмов сомножителей.

3) Логарифм частного равен разности логарифмов


Множитель
называется модулем перехода от логарифмов при основанииa к логарифмам при основанииb .

С помощью свойств 2-5 часто удается свести логарифм сложного выражения к результату простых арифметических действий над логарифмами.

Например,

Такие преобразования логарифма называются логарифмированием. Преобразования обратные логарифмированию называются потенцированием.

Глава 2. Элементы высшей математики.

1. Пределы

Пределом функции
является конечное число А, если при стремлении xx 0 для каждого наперед заданного
, найдется такое число
, что как только
, то
.

Функция, имеющая предел, отличается от него на бесконечно малую величину:
, где- б.м.в., т.е.
.

Пример. Рассмотрим функцию
.

При стремлении
, функцияy стремится к нулю:

1.1. Основные теоремы о пределах.

    Предел постоянной величины равен этой постоянной величине

.

    Предел суммы (разности) конечного числа функций равен сумме (разности) пределов этих функций.

    Предел произведения конечного числа функций равен произведению пределов этих функций.

    Предел частного двух функций равен частному пределов этих функций, если предел знаменателя не равен нулю.

Замечательные пределы

,
, где

1.2. Примеры вычисления пределов

Однако, не все пределы вычисляются так просто. Чаще вычисление предела сводится к раскрытию неопределенности типа: или .

.

2. Производная функции

Пусть мы имеем функцию
, непрерывную на отрезке
.

Аргумент получил некоторое приращение
. Тогда и функция получит приращение
.

Значению аргумента соответствует значение функции
.

Значению аргумента
соответствует значение функции .

Следовательно, .

Найдем предел этого отношения при
. Если этот предел существует, то он называется производной данной функции.

Определение 3Производной данной функции
по аргументу называется предел отношения приращения функции к приращению аргумента, когда приращение аргумента произвольным образом стремится к нулю.

Производная функции
может быть обозначена следующим образом:

; ; ; .

Определение 4Операция нахождения производной от функции называетсядифференцированием.

2.1. Механический смысл производной.

Рассмотрим прямолинейное движение некоторого твердого тела или материальной точки.

Пусть в некоторый момент времени движущаяся точка
находилась на расстоянии от начального положения
.

Через некоторый промежуток времени
она переместилась на расстояние
. Отношение =- средняя скорость материальной точки
. Найдем предел этого отношения, учитывая что
.

Следовательно, определение мгновенной скорости движения материальной точки сводится к нахождению производной от пути по времени.

2.2. Геометрическое значение производной

Пусть у нас есть графически заданная некоторая функция
.

Рис. 1. Геометрический смысл производной

Если
, то точка
, будет перемещаться по кривой, приближаясь к точке
.

Следовательно
, т.е. значение производной при данном значении аргумента численно равняется тангенсу угла образованного касательной в данной точке с положительным направлением оси
.

2.3. Таблица основных формул дифференцирования.

Степенная функция

Показательная функция

Логарифмическая функция

Тригонометрическая функция

Обратная тригонометрическая функция

2.4. Правила дифференцирования.

Производная от

Производная суммы (разности) функций


Производная произведения двух функций


Производная частного двух функций


2.5. Производная от сложной функции.

Пусть дана функция
такая, что ее можно представить в виде

и
, где переменнаяявляется промежуточным аргументом, тогда

Производная сложной функции равна произведению производной данной функции по промежуточному аргументу на производную промежуточного аргумента по x.

Пример1.

Пример2.

3. Дифференциал функции.

Пусть есть
, дифференцируемая на некотором отрезке
и пустьу этой функции есть производная

,

тогда можно записать

(1),

где - бесконечно малая величина,

так как при

Умножая все члены равенства (1) на
имеем:

Где
- б.м.в. высшего порядка.

Величина
называется дифференциалом функции
и обозначается

.

3.1. Геометрическое значение дифференциала.

Пусть дана функция
.

Рис.2. Геометрический смысл дифференциала.

.

Очевидно, что дифференциал функции
равен приращению ординаты касательной в данной точке.

3.2. Производные и дифференциалы различных порядков.

Если есть
, тогда
называется первой производной.

Производная от первой производной называется производной второго порядка и записывается
.

Производной n-го порядка от функции
называется производная (n-1)-го порядка и записывается:

.

Дифференциал от дифференциала функции называется вторым дифференциалом или дифференциалом второго порядка.

.

.

3.3 Решение биологических задач с применением дифференцирования.

Задача1. Исследования показали, что рост колонии микроорганизмов подчиняется закону
, гдеN – численность микроорганизмов (в тыс.),t –время (дни).

б) Будет ли в этот период численность колонии увеличиваться или уменьшаться?

Ответ. Численность колонии будет увеличиваться.

Задача 2. Вода в озере периодически тестируется для контроля содержания болезнетворных бактерий. Черезt дней после тестирования концентрация бактерий определяется соотношением

.

Когда в озере наступит минимальная концентрация бактерий и можно будет в нем купаться?

РешениеФункция достигает max или min, когда ее производная равна нулю.

,

Определим max или min будет через 6 дней. Для этого возьмем вторую производную.


Ответ: Через 6 дней будет минимальная концентрация бактерий.


В центре внимания этой статьи – логарифм . Здесь мы дадим определение логарифма, покажем принятое обозначение, приведем примеры логарифмов, и скажем про натуральные и десятичные логарифмы. После этого рассмотрим основное логарифмическое тождество.

Навигация по странице.

Определение логарифма

Понятие логарифма возникает при решении задачи в известном смысле обратной , когда нужно найти показатель степени по известному значению степени и известному основанию.

Но хватит предисловий, пришло время ответить на вопрос «что такое логарифм»? Дадим соответствующее определение.

Определение.

Логарифм числа b по основанию a , где a>0 , a≠1 и b>0 – это показатель степени, в который нужно возвести число a , чтобы в результате получить b .

На этом этапе заметим, что произнесенное слово «логарифм» должно сразу вызывать два вытекающих вопроса: «какого числа» и «по какому основанию». Иными словами, просто логарифма как бы нет, а есть только логарифм числа по некоторому основанию.

Сразу введем обозначение логарифма : логарифм числа b по основанию a принято обозначать как log a b . Логарифм числа b по основанию e и логарифм по основанию 10 имеют свои специальные обозначения lnb и lgb соответственно, то есть, пишут не log e b , а lnb , и не log 10 b , а lgb .

Теперь можно привести : .
А записи не имеют смысла, так как в первой из них под знаком логарифма находится отрицательное число, во второй – отрицательное число в основании, а в третьей – и отрицательное число под знаком логарифма и единица в основании.

Теперь скажем о правилах чтения логарифмов . Запись log a b читается как «логарифм b по основанию a ». Например, log 2 3 - это логарифм трех по основанию 2 , а - это логарифм двух целых двух третьих по основанию квадратный корень из пяти. Логарифм по основанию e называют натуральным логарифмом , а запись lnb читается как «натуральный логарифм b ». К примеру, ln7 – это натуральный логарифм семи, а мы прочитаем как натуральный логарифм пи. Логарифм по основанию 10 также имеет специальное название – десятичный логарифм , а запись lgb читается как «десятичный логарифм b ». Например, lg1 - это десятичный логарифм единицы, а lg2,75 - десятичный логарифм двух целых семидесяти пяти сотых.

Стоит отдельно остановиться на условиях a>0 , a≠1 и b>0 , при которых дается определение логарифма. Поясним, откуда берутся эти ограничения. Сделать это нам поможет равенство вида , называемое , которое напрямую следует из данного выше определения логарифма.

Начнем с a≠1 . Так как единица в любой степени равна единице, то равенство может быть справедливо лишь при b=1 , но при этом log 1 1 может быть любым действительным числом. Чтобы избежать этой многозначности и принимается a≠1 .

Обоснуем целесообразность условия a>0 . При a=0 по определению логарифма мы бы имели равенство , которое возможно лишь при b=0 . Но тогда log 0 0 может быть любым отличным от нуля действительным числом, так как нуль в любой отличной от нуля степени есть нуль. Избежать этой многозначности позволяет условие a≠0 . А при a<0 нам бы пришлось отказаться от рассмотрения рациональных и иррациональных значений логарифма, так как степень с рациональным и иррациональным показателем определена лишь для неотрицательных оснований. Поэтому и принимается условие a>0 .

Наконец, условие b>0 следует из неравенства a>0 , так как , а значение степени с положительным основанием a всегда положительно.

В заключение этого пункта скажем, что озвученное определение логарифма позволяет сразу указать значение логарифма, когда число под знаком логарифма есть некоторая степень основания. Действительно, определение логарифма позволяет утверждать, что если b=a p , то логарифм числа b по основанию a равен p . То есть, справедливо равенство log a a p =p . Например, мы знаем, что 2 3 =8 , тогда log 2 8=3 . Подробнее об этом мы поговорим в статье

Что такое логарифм?

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

Что такое логарифм? Как решать логарифмы? Эти вопросы многих выпускников вводят в ступор. Традиционно тема логарифмов считается сложной, непонятной и страшной. Особенно - уравнения с логарифмами.

Это абсолютно не так. Абсолютно! Не верите? Хорошо. Сейчас, за какие-то 10 - 20 минут вы:

1. Поймете, что такое логарифм .

2. Научитесь решать целый класс показательных уравнений. Даже если ничего о них не слышали.

3. Научитесь вычислять простые логарифмы.

Причём для этого вам нужно будет знать только таблицу умножения, да как возводится число в степень...

Чувствую, сомневаетесь вы... Ну ладно, засекайте время! Поехали!

Для начала решите в уме вот такое уравнение:

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

Приведены основные свойства натурального логарифма, график, область определения, множество значений, основные формулы, производная, интеграл, разложение в степенной ряд и представление функции ln x посредством комплексных чисел.

Определение

Натуральный логарифм - это функция y = ln x , обратная к экспоненте , x = e y , и являющаяся логарифмом по основанию числа е : ln x = log e x .

Натуральный логарифм широко используется в математике, поскольку его производная имеет наиболее простой вид: (ln x)′ = 1/ x .

Исходя из определения , основанием натурального логарифма является число е :
е ≅ 2,718281828459045... ;
.

График функции y = ln x .

График натурального логарифма (функции y = ln x ) получается из графика экспоненты зеркальным отражением относительно прямой y = x .

Натуральный логарифм определен при положительных значениях переменной x . Он монотонно возрастает на своей области определения.

При x → 0 пределом натурального логарифма является минус бесконечность ( - ∞ ).

При x → + ∞ пределом натурального логарифма является плюс бесконечность ( + ∞ ). При больших x логарифм возрастает довольно медленно. Любая степенная функция x a с положительным показателем степени a растет быстрее логарифма.

Свойства натурального логарифма

Область определения, множество значений, экстремумы, возрастание, убывание

Натуральный логарифм является монотонно возрастающей функцией, поэтому экстремумов не имеет. Основные свойства натурального логарифма представлены в таблице.

Значения ln x

ln 1 = 0

Основные формулы натуральных логарифмов

Формулы, вытекающие из определения обратной функции:

Основное свойство логарифмов и его следствия

Формула замены основания

Любой логарифм можно выразить через натуральные логарифмы с помощью формулы замены основания:

Доказательства этих формул представлены в разделе "Логарифм" .

Обратная функция

Обратной для натурального логарифма является экспонента .

Если , то

Если , то .

Производная ln x

Производная натурального логарифма:
.
Производная натурального логарифма от модуля x :
.
Производная n-го порядка:
.
Вывод формул > > >

Интеграл

Интеграл вычисляется интегрированием по частям :
.
Итак,

Выражения через комплексные числа

Рассмотрим функцию комплексной переменной z :
.
Выразим комплексную переменную z через модуль r и аргумент φ :
.
Используя свойства логарифма, имеем:
.
Или
.
Аргумент φ определен не однозначно. Если положить
, где n - целое,
то будет одним и тем же числом при различных n .

Поэтому натуральный логарифм, как функция от комплексного переменного, является не однозначной функцией.

Разложение в степенной ряд

При имеет место разложение:

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Сегодня мы поговорим о формулах логарифмов и дадим показательные примеры решения .

Сами по себе подразумевают шаблоны решения согласно основным свойствам логарифмов. Прежде применять формулы логарифмов для решения напомним для вас, сначала все свойства:

Теперь на основе этих формул(свойств), покажем примеры решения логарифмов .

Примеры решения логарифмов на основании формул.

Логарифм положительного числа b по основанию a (обозначается log a b) - это показатель степени, в которую надо возвести a, чтобы получить b, при этом b > 0, a > 0, а 1.

Согласно определения log a b = x, что равносильно a x = b, поэтому log a a x = x.

Логарифмы , примеры:

log 2 8 = 3, т.к. 2 3 = 8

log 7 49 = 2, т.к. 7 2 = 49

log 5 1/5 = -1, т.к. 5 -1 = 1/5

Десятичный логарифм - это обычный логарифм, в основании которого находится 10. Обозначается как lg.

log 10 100 = 2, т.к. 10 2 = 100

Натуральный логарифм - также обычный логарифм логарифм, но уже с основанием е (е = 2,71828... - иррациональное число). Обозначается как ln.

Формулы или свойства логарифмов желательно запомнить, потому что они понадобятся нам в дальнейшем при решении логарифмов, логарифмических уравнений и неравенств. Давайте еще раз отработаем каждую формулу на примерах.

  • Основное логарифмическое тождество
    a log a b = b

    8 2log 8 3 = (8 2log 8 3) 2 = 3 2 = 9

  • Логарифм произведения равен сумме логарифмов
    log a (bc) = log a b + log a c

    log 3 8,1 + log 3 10 = log 3 (8,1*10) = log 3 81 = 4

  • Логарифм частного равен разности логарифмов
    log a (b/c) = log a b - log a c

    9 log 5 50 /9 log 5 2 = 9 log 5 50- log 5 2 = 9 log 5 25 = 9 2 = 81

  • Свойства степени логарифмируемого числа и основания логарифма

    Показатель степени логарифмируемого числа log a b m = mlog a b

    Показатель степени основания логарифма log a n b =1/n*log a b

    log a n b m = m/n*log a b,

    если m = n, получим log a n b n = log a b

    log 4 9 = log 2 2 3 2 = log 2 3

  • Переход к новому основанию
    log a b = log c b/log c a,

    если c = b, получим log b b = 1

    тогда log a b = 1/log b a

    log 0,8 3*log 3 1,25 = log 0,8 3*log 0,8 1,25/log 0,8 3 = log 0,8 1,25 = log 4/5 5/4 = -1

Как видите, формулы логарифмов не так сложны как кажутся. Теперь рассмотрев примеры решения логарифмов мы можем переходить к логарифмическим уравнениям. Примеры решения логарифмических уравнений мы более подробно рассмотрим в статье: " ". Не пропустите!

Если у вас остались вопросы по решению, пишите их в комментариях к статье.

Заметка: решили получить образование другого класса обучение за рубежом как вариант развития событий.