Альдегиды реагируют с кислородом. Альдегиды























Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цель урока: характеризовать состав, строение, классификацию, физические и химические свойства, получение и применение альдегидов. Устанавливать взаимосвязь между изученными классами органических соединений. Знать качественные реакции на альдегиды.

Всюду в нашей жизни мы встречаемся с органической химией: мы едим продукты химической промышленности, мы одеваемся непосредственно в ее результаты: ацетатный шелк, искусственную шерсть, изделия из кожзаменителя и многое другое, благодаря химии мы можем проводить сложные операции (наркоз), лечить ангину и просто ставить уколы, где в качестве антисептика мы выбираем этиловый спирт.

Сегодня мы познакомимся с вами с классом органических веществ – альдегидами. Сегодня на уроке мы докажем, что жизнь без альдегидов невозможна. Узнаем, как связаны с этой темой хорошо известные вещества: ванилин, моющие средства, формалин, пластмасса, зеркало, уксусная кислота

Итак, альдегиды – это органические соединения, содержащие в составе своей молекулы, полярную карбонильную группу. В зависимости от заместителей, связанных с оксогруппой, эти вещества подразделяют на альдегиды и кетоны. В альдегидах с карбонильной группой связаны углеводородный радикал и атом водорода, тогда как в кетонах карбонильный углерод связан с двумя углеводородными радикалами.

Общая формула предельных карбонильных соединений C n H 2n O

Названия альдегидов по тривиальной номенклатуре часто производят от названий соответствующих монокарбоновых кислот. По рациональной номенклатуре альдегиды с разветвленной углеводородной цепью рассматриваются как производные ацетальдегида. По систематической номенклатуре названия рассматриваемых соединений производятся от соответствующих алканов с добавлением суффикса – аль.

Способы получения альдегидов. Основными способами получения альдегидов является каталитическое дегидрирование спиртов, гидратация алкинов, окисление спиртов.

Физические свойства.

Первый член гомологического ряда предельных альдегидов НСОН – бесцветный газ, несколько последующих альдегидов – жидкости. Высшие альдегиды – твердые вещества. Карбонильная группа обуславливает высокую реакционную способность альдегидов. Температура кипения альдегидов возрастает с увеличением молекулярной массы. Кипят они при более низкой температуре, чем соответствующие спирты, например пропионовый альдегид при 48,8 0 С, а пропиловый спирт – при 97,8 0 С.

Плотность альдегидов меньше единицы. Муравьиный и уксусный альдегиды хорошо растворяются в воде, последующие – хуже. Низшие альдегиды имеют резкий, неприятный запах, некоторые высшие – приятный запах.

Реакционная способность альдегидов обусловлена наличием активной карбонильной группы. Высокая электроотрицательность атома кислорода способствует сильной поляризации двойной связи в карбонильной группе и смещению подвижных?-электронов в сторону атома кислорода.

Химические свойства альдегидов:

1. Реакции присоединения:

А) реакция гидрирования

Б) реакция присоединения NaHSO 3

2. Реакции окисления:

А) реакция серебряного зеркала

Б) реакция светофор

3. Реакция поликонденсации

4. Реакция полимеризации

Качественная реакция на карбоксильную группу - реакция окисления альдегидов гидроксидом меди (ІІ) - светофор.

НСОН + 2Cu(OH) 2 = HCOOH +Cu 2 O +2H 2 O

“Реакция серебряного зеркала”

Вы можете представить себе жизнь без зеркала? Проснуться утром – и не увидеть своего отражения? Кажется, ерунда, мелочь. А ведь какой душевный дискомфорт! Недаром сказочных персонажей в качестве наказания лишали отражения. Что такое зеркало? В чем его сила? Откуда оно появилось? Как его изготавливают?

Как мы уже знаем, первыми настоящими зеркалами служили отполированные до блеска металлические пластинки из меди, золота, серебра. Однако такие зеркала имели большой недостаток – на воздухе быстро темнели и тускнели. Какой же выход нашли из этой ситуации? Многочисленные опыты показали, что блестящий металлический слой можно нанести и на стекло. Так, в I в. н.э. начали изготавливать стеклянные зеркала – стеклянные пластинки, соединенные со свинцовыми или оловянными пластинами. Делалось это так: мыли спиртом стекло, очищали его тальком и затем к поверхности плотно прижимали оловянный лист. Сверху наливали ртуть и, дав ей постоять, сливали избыток. Образовавшийся слой амальгамы заклеивали или закрашивали. Такие зеркала оказались намного долговечнее металлических, поэтому ремесленные мастерские перешли на выпуск стеклянных зеркал, отражающая поверхность которых была сделана из амальгамы олова (раствор олова Sn в ртути Hg). Но, поскольку пары ртути очень ядовиты, производство ртутных зеркал было весьма вредным, да и сами зеркала содержали ртуть. Было опасно держать ртутные зеркала в жилых помещениях.

Поэтому ученые продолжали искать замену для ртути. Ее нашли французский химик Франсуа Птижан и великий немецкий ученый Юстус Либих. Либих предложил изготавливать стеклянные зеркала с серебряным покрытием. Разработанный им метод состоял из следующих операций. Сначала к водному раствору нитрата серебра AgNO 3 добавляли водный раствор гидроксида калия KОН, что приводило к осаждению черно-коричневого осадка оксида серебра Ag 2 O.

2AgNO 3 + 2KOH = Ag 2 O + 2KNO 3 + H 2 O.

Осадок отфильтровывали и перемешивали с водным раствором аммиака NH 3 .

Ag 2 O + 4NH 3 + H 2 O = 2 (OH).)

Оксид серебра растворялся в аммиачной воде с образованием комплексного соединения (аммиаката, или аммина) – гидроксида диамминсеребра(I). Затем в полученный прозрачный раствор погружали лист стекла, одна из поверхностей которого была тщательно обезжирена, и добавляли формальдегид НСНО.

2(OH) + HCHO = 2Ag + HCOONH 4 + 3NH 3 + H 2 O.)

Формальдегид восстанавливал серебро, которое осаждалось на очищенной поверхности стекла, покрывая его блестящим зеркальным налетом.

Применение альдегидов и кетонов.

Формальдегид. Первым членом гомологического ряда предельных альдегидов является формальдегид НСОН. Его называю также метаналь и муравьиный альдегид. Он представляет собой бесцветный газ с характерным резким запахом. Широко применяется водный раствор, содержащий в массовых долях 0,4, или 40%, метаналя. Он называется формалином. Формальдегид (формалин), прозрачная бесцветная жидкость со своеобразным острым запахом. Применяют как дезинфицирующее и дезодорирующее средство для мытья рук, обмывания кожи при повышенной потливости (0,5–1%), для дезинфекции инструментов (0,5%), для спринцеваний (1:2000 – 1:3000). Входит в состав лизоформа.

Его использование основано также на свойстве свертывать белок. Так, например, в кожевенном производстве дубящее действие формалина объясняется свертыванием белка, в результате чего кожа твердеет и не подвергается гниению. На этом же свойстве основано применение формалина для сохранения биологических препаратов. Иногда формалин используется для дезинфекции и протравливания семян. Метаналь идет на производство некоторых лекарственных веществ и красителей. Большое количество метаналя используется для получения фенолформальдегидной смолы, которую получают при взаимодействии метаналя с фенолом. Эта смола необходима для производства различных пластмасс.

Пластмассы, изготовленные из фенолформальдегидной смолы в сочетании с различными наполнителями, называются фенопластами. При растворении фенолформальдегидной смолы в ацетоне или спирте получают различные лаки.

При взаимодействии метаналя с карбамидом СО(NН) 2 получают карбамидную смолу, а из нее – аминопласты. Из этих пластмасс изготовляют микропористые материалы для нужд электротехники (выключатели, розетки), материалы для отделки мебели и интерьеров, древесностружечные плиты, искусственный мрамор. Тепло – и звукоизоляционные пористые материалы.

Ацетальдегид СН 3 – СОН представляет собой бесцветную жидкость с резким удушающим запахом. Применяют в производстве ацетатов целлюлозы, уксусной и пероксиуксусной кислот, уксусного ангидрида, этилацетата, глиоксаля, алкиламинов, бутанола, хлораля. Подобно формальдегиду он вступает в реакции поликонденсации с аминами, фенолом и другими веществами, образуя синтетические смолы, широко применяемые в промышленности.

Бензальдегид С 6 Н 5 С(Н)=О с запахом горького миндаля содержится в миндальном масле и в эфирном масле эвкалипта. Синтетический бензальдегид используется в пищевых ароматических эссенциях и в парфюмерных композициях.

Алифатический альдегид СН 3 (СН 2) 7 С (Н)=О (тривиальное название – пеларгоновый альдегид) содержится в эфирных маслах цитрусовых растений, обладает запахом апельсина, его используют как пищевой ароматизатор.

Ароматический альдегид ванилин содержится в плодах тропического растения ванили, сейчас чаще используется синтетический ванилин – широко известная ароматизирующая добавка в кондитерские изделия.

Цитраль С 10 Н 15 О (3,7-диметил – 2,6-октадиеналь) с запахом лимона используется в средствах бытовой химии.

Кротоновый альдегид. Сильный лакриматор, используют для получения бутанола, сорбиновой и масляной кислот. Содержится в соевом масле. Применение альдегидов в медицине.

Коричный альдегид содержится в масле корицы, его получают перегонкой коры дерева корицы. Применяется в кулинарии в виде палочек или порошка

Уротропин (CH 2) 6 N 4 (гексаметилентетрамин), бесцветные кристаллы без запаха, легко растворимы в воде. Водные растворы имеют щелочную реакцию. Обладает антисептическим действием. Применяют главным образом при инфекционных процессах мочевыводящих путей (циститах, пиелитах). Действие основано на способности препарата разлагаться в кислой среде с образованием формальдегида. Назначают препарат натощак. Показаниями для его применения служат холециститы, холангиты, аллергические заболевания кожи, глаз (кератиты, иридоциклиты и др.). Препарат может вызвать раздражение паренхимы почек, при этих признаках прием препарата прекращают.

Акролеин. Используется для производства пластмасс, отличающихся большой твердостью. Акролеин и его натриевые соли являются эмульгаторами, структурирующими почвы, лактонные его производные улучшают свойства бумаги и текстильных изделий.

Обобщение и систематизация знаний. Подведение итогов урока.

Таким образом, способность альдегидов и кетонов участвовать в различных превращениях определила их основное применение в качестве исходных соединений для синтеза разнообразных органических веществ: спиртов, карбоновых кислот и их ангидридов, лекарственных препаратов (уротропин), полимерных продуктов (фенолоформальдегидные смолы, полиформальдегид), в производстве всевозможных душистых веществ (на основе бензальдегида) и красителей.

Домашнее задание.

Название альдегид применяется к соединениям, содержащим карбонильную группу, связанную с атомом водорода (-COH)

Альдегиды чаще всего имеют тривиальные названия, обычно такие же, как кислоты, в которые они переходят при окислении.

Название неразветвленного ациклического альдегида образовывают путем добавления окончания "–АЛ " ("–АЛЬ " в русской терминологии) к названию углеводорода, содержащего тоже число атомов углерода, например:

Наличие кратных связей или боковых цепей в молекуле альдегида обозначается аналогично алканам:

3-метилпентаналь

По рациональной номенклатуре альдегиды жирного ряда иногда рассматривают как производные уксусного альдегида, например: триметилуксусный альдегид, метилэтилуксусный альдегид и т.д.

Для альдегидов широко применяются не систематические – тривиальные названия. Они образуются из соответствующих тривиальных названий карбоновых кислот. Эти названия приведены в таблице 7.

Таблица 7

Названия альдегидов

НАЗВАНИЕ

Название в русской терминологии

формальдегид

муравьиный альдегид

ацетальдегид

уксусный альдегид

С 2 Н 5 СОН

пропиональдегид

пропионовый альдегид

С 3 Н 7 СОН

бутилальдегид

масляный альдегид

С 4 Н 9 СОН

валеральдегид

валериановый альдегид

CH 2 =CH 2 –COH

акрилальдегид

акриловый альдегид

HOC–CH 2 –COH

малональдегид

малоновый альдегид

Исключение: этандиальдегид обычно называют глиоксалем.

Название кетон применяется к соединениям, содержащим карбонильную группу, связанную с двумя углеводородными радикалами.

Названия кетонов образуются путем добавления окончания "–ОН " или "–ДИОН " и т.д. к названию углеводорода соответствующего главной цепи.

2-бутанон 2,4-гескандион

По радикально-функциональной номенклатуре названия кетонов производят от названий углеводородных радикалов, связанных с карбонильной группой, добавляя окончание "–КЕТОН "

Таблица 8

Названия кетона

диэтилкетон диметилкетон

3-пентанон пропанон

У некоторых кетонов, также как и у альдегидов, сохраняются тривиальные названия

ацетон диацетил

4.3. "Карбоновые кислоты"

К
арбоновыми кислотами являются соединения, содержащие в своем строении карбоксильную группу (-COOH)

Названия одноосновных карбоновых кислот строится по трем видам номенклатур.

Тривиальные названия не выражают строения соединения и обычно отражают историю, происхождение веществ, выделение их из природных продуктов, путь синтеза т.д.

По рациональной номенклатуре карбоновые кислоты рассматриваются как замещенные уксусной кислоты (метилэтилуксусная, триметилуксусная и т.д.).

Номенклатура ИЮПАК. Имеются два варианта образования названия.

1-й вариант: углеродный атом карбоксильной группы считается составной частью углеродного скелета, и название кислоты образуется из названия соответствующего углеводорода путем добавления к нему окончания "–ОВАЯ КИСЛОТА ". Этот вариант наиболее предпочтителен для простых алифатических кислот.

гексановая кислота

2-й вариант: карбоксильная группа рассматривается в качестве заместителя в углеводородной цепи. К названию соответсвующего углеводорода добавляется окончание "–КАРБОНОВАЯ КИСЛОТА "

1-пентанкарбоновая кислота

предельных одноосновных карбоновых кислот образуют из названий алканов с таким же числом атомов углерода с добавлением суффикса.

АЛЬДЕГИДЫ И КЕТОНЫ

Альдегидами и кетонами называют производные углеводородов, содер­жащие карбонильную группу С=О. В молекуле альдегидов по крайней мере одна валентность карбонильной группы затрачивается на соедине­ние с атомом водорода, а другая - с радикалом (предельного ряда в пре­дельных альдегидах и непредельного - в непредельных альдегидах). Об­щая формула альдегидов:

причем R может быть равно Н.

В случае кетонов обе валентности карбонильной группы затрачиваются на соединение с радикалами. Общая формула кетонов:

Изомерия. Номенклатура.

Общая формула предельных альдегидов и кетонов С n Н 2 n O.

Изомерия альдегидов связана со строением радикалов. Так, например, известно четыре альдегида с формулой

(см. ниже).

Альдегиды называют или по кислотам, в которые они переходят при окислении (с тем же числом углеродных атомов), или по предельным угле­водородам с добавлением суффикса -аль (систематическая номенклатура).

муравьиный альдегид (формальдегид), метаналь (рис. 1а )
уксусный альдегид, этаналь (рис. 1б )
пропионовый альдегид, пропаналь
СН 3 -СН 2 -СН 2 -СНО масляный альдегид, бутаналь
изомасляный альдегид, 2-метилпропаналь
СН 3 -СН 2 -СН 2 -СН 2 -СНО валериановый альдегид, пентаналь
изовалернановый альдегид, 3-метилбутаналь
метилэтилуксусный альдегид, 2-метилбутаналь
триметилуксусный альдегид, 2,2-диметлпропаналь


Изомерия кетонов связана со строением радикалов и с положением карбонильной группы в углеродной цепи. Кетоны называют по наимено­ванию радикалов, связанных с карбонильной группой. По систематичес­кой номенклатуре к названию предельного углеводорода добавляется суф­фикс -он и указывается номер атома углерода, связанного с карбониль­ным кислородом:

Способы получения

Альдегиды и кетоны получают рядом общих методов.

1. Окислением или каталитическим дегидрированием первичных спир­тов получают альдегиды, вторичных - кетоны. Эти реакции уже приво­дились при рассмотрении химических свойств спиртов.

2. Альдегиды и кетоны удобно также получать пиролизом кислот и их смесей в виде паров над оксидами некоторых металлов (ThО 2 , МnО 2 , CaO, ZnO) при 400-450 °С:



R - СООН + Н-СООН→R-СНО + СО 2 + Н 2 0

2R-СООН→R -СО -R + C0 2 + Н 2 0

R-СООН + R" - СООН → R - СО-R’+С0 2 + Н 2 0

Во многих учебниках указывается, что альдегиды и кетоны могут быть получены пироли­зом Са- и Ва-солей карбоновых кислот. В действительности эта реакция дает очень низкие выходы. Однако некоторые метилкетоны все же могут быть получены пиролизом смесей ба­риевых или железных солей уксусной и какой-либо другой кислоты. Все эти реакции имеют радикальный механизм.

3. Гидролиз геминальных дигалогенопроизводных приводит к альдеги­дам, если оба галогена находятся у одного из крайних атомов углерода, и кетонам, если атомы галогена находятся у одного из средних атомов угле­рода. Эти реакции уже упоминались при изучении химических свойств дигалогенопроизводных углеводородов.

4. Гидратация ацетилена и его гомологов в условиях реакции Кучерова приводит соответственно к уксусному альдегиду или кетонам:

НС≡СН + Н 2 O→ СН 3 -СНО

5. Карбонильные соединения с высокими выходами (порядка 80%) образуются при окислении соответствующих спиртов смесями дпметилсульфоксида с уксусным ангидридом или безводной фосфорной кислотой.

RCH 2 OH + (CH 3) 2 SO→ RCH = О + (CH 3) 2 S

6. Превращение галогеналкилов в альдегиды с удлинением цепи на один атом углерода достигается обработкой их натрийтетракарбонилферратом в присутствии трифенилфосфина, а затем уксусной кислотой:

R - Hlg + Na 2 Fe(CO) 4 RCOFe(CO 3)P(C 6 H 5) 3 R–CH = О

Имеется несколько модификаций этого метода.

7. Кетоны с хорошими выходами получаются при взаимодействии хлорангидридов кис­лот с литийдиалкилкупратамн и кадмийалкилами:

R 2 CuLi + R"COCI→R - СО - R"+LiCI + R - Сu

8. В технике альдегиды получают прямым присоединением СО и H 2 к олефинам (оксосинтез) при 100-200 °С под давлением 10-20 МПа (100-200 атм) в присутствии кобальтового или никелевого катализато­ров (например, Со + ThO 2 + MgO, нанесенные на кизельгур):

Реакцию с этиленом и пропиленом проводят в газовой фазе, а с более сложными олефинамн (С 4 -С 20) - в жидкой фазе. Как видно из приведенной схемы, при оксосинтезе полу­чаются альдегиды, содержащие на один атом углерода больше, чем исходные олефины. Этот синтез имеет важное значение для получения высших первичных спиртов (каталитическим восстановлением альдегидов). Механизм оксосинтеза можно представить следующим образом:

2Со + 8СО→ Со 2 (СО) 8

Cо 2 (CO)8 + H 2 → 2НСо(СО) 4

R -СН=СН 2 + НСо(СО) 4 → R - СН 2 -СН 2 - Со(СО) 4

R - СН 2 -СН 2 -Со(СО) 4 +СО→ R-СН 2 -СН 2 -СО - Со(СО) 4

R-СН 2 -СН 2 -СО-Со(СО) 4 + НСо(СО) 4 →R-СН 2 -СН 2 -СНО + Со(СО) 8

Физические свойства

Муравьиный альдегид - газ с весьма резким запахом. Другие низшие альдегиды и кетоны - жидкости, легко растворимые в воде; низшие аль­дегиды обладают удушливым запахом, который при сильном разведении становится приятным (напоминает запах плодов). Кетоны пахнут доволь­но приятно.

При одном и том же составе, и строении углеродной цепи кетоны кипят при несколько более высоких температурах, чем альдегиды. Температуры кипения альдегидов и кетонов с нормальным строением цепи выше, чем у соединений изостроения. Например, валериановый альдегид кипит при 103,4 °С, а изовалериановый - при 92,5 °С. Альдегиды и кетоны кипят при температуре, значительно более низкой, чем спирты с тем же числом углеродных атомов, например у пропионового альдегида т. кип. 48,8 °С, у ацетона 65,1 °С, у н -пропилового спирта 97,8 °С. Это показывает, что альдегиды и кетоны в отличие от спиртов не являются сильно ассоцииро­ванными жидкостями. В то же время температуры кипения карбонильных соединений значительно выше температур кипения углеводородов с той же молекулярной массой, что связано с их высокой полярностью. Плот­ность альдегидов и кетонов ниже единицы.

В ИК-спектрах для СО-группы характерно интенсивное поглощение при 1720 см -1 . В спектре ЯМР сигнал водорода альдегидной группы на­ходится в очень слабом поле.

Химические свойства

Альдегиды и кетоны отличаются большой реакционной способностью. Большинство их реакций обусловлено присутствием активной карбониль­ной группы. Двойная связь карбонильной группы сходна по физической природе с двойной связью между двумя углеродными атомами (σ-связь + π-связь). Однако в то время как Е с=с <2Е с-с, энергия связи С=О (749,4 кДж/моль) больше, чем энергия двух простых С-О-связей (2х358 кДж/моль). С другой стороны, кислород является более электро­отрицательным элементом, чем углерод, и потому электронная плотность вблизи атома кислорода больше, чем вблизи атома уг­лерода. Дипольный момент карбонильной груп­пы - около 9 10 -30 Кл/м (2,7 D). Благодаря такой поляризации углеродный атом карбонильной группы обладает электрофильными свойствами и способен реагировать с нуклеофильными реагентами. Соответ­ственно атом кислорода является нуклеофильным. В реакциях присоединения отрицательно поляризо­ванная часть присоединяющейся молекулы всегда на­правляется к углеродному атому карбонильной груп­пы, в то время как ее положительно поляризованная часть направляется к кислородному атому.

Реакция присоединения нуклеофильных реагентов по месту карбо­нильной связи - ступенчатый процесс. Схематически реакцию присо­единения, например гидросульфита натрия к уксусному альдегиду, можно изобразить следующим образом:

Радикалы, способные увеличивать положительный заряд на атоме уг­лерода карбонильной группы, сильно повышают реакционную способ­ность альдегидов и кетонов; радикалы или атомы, уменьшающие положи­тельный заряд на этом углеродном атоме, оказывают противоположное действие.

Помимо реакций присоединения по карбонильной группе для альдеги­дов и кетонов характерны также реакции с участием соседних с карбо­нильной группой углеродных радикалов, обусловленные электроноакцеп­торным влиянием на них карбонильной группы. К ним относятся реакции окисления, галогенирования, конденсации.

А. Гидрирование. Присоединение водорода к альдегидам и кетонам происходит в присутствии катализаторов гидрирования (Ni, Со, Си, Pt, Pd и др.). При этом альдегиды переходят в первичные, а кетоны - во вто­ричные спирты. На этом основан один из методов получения спиртов.

В последнее время в качестве восстанавливающего агента часто применяют лнтийалюминийгидрид LiА1Н 4 . Реакция идет с переносом гидридного иона:

Преимуществом восстановления с помощью LiAlН 4 является то, что этот реагент не вос­станавливает двойные углерод-углеродные связи.

При восстановлении альдегидов или кетонов водородом в момент выде­ления (с помощью щелочных металлов или амальгамированного магния) образуются наряду с соответствующими спиртами также гликоли:

пинакон

Соотношение между образующимися спиртом и гликолем зависит от природы карбонильного соединения и условий восстановления. При вос­становлении кетонов в продуктах реакции в апротонных растворителях преобладают пинаконы; в случае алифатических насыщенных альдегидов гликоли образуются в малых количествах.

Реакция протекает с промежу­точным образованием свободных радикалов:

Б. Реакции нуклеофильного присоединения.

1. Присоединение магнийгалогеналкилов подробно разобрано при описании методов получения спиртов.

2. Присоединение синильной кислоты приводит к образованию α-оксинитрилов, омылением которых получают α-гидроксикислоты:

нитрил α-гидроксипропионовой кислоты

Эта реакция начинается нуклеофильной атакой углеродного атома ионом CN - . Циани­стый водород присоединяется очень медленно. Добавление капли раствора цианистого калия значительно ускоряет реакцию, в то время как добавление минеральной кислоты уменьшает скорость реакции практически до нуля. Это показывает, что активным реагентом при обра­зовании циангидрина является ион CN - :

3. Присоединение гидросульфита натрия дает кристаллические веще­ства, обычно называемые гидросульфитными производными альдегидов или кетонов:

При нагревании с раствором соды или минеральных кислот гидросуль­фитные производные разлагаются с выделением свободного альдегида или кетона, например:

Реакция с гидросульфитом натрия используется для качественного определения альдегидов и кетонов, а также для их выделения и очистки. Следует, однако, заметить, что в реакцию с гидросульфитом натрия в жир­ном ряду вступают только метилкетоны, имеющие группировку СН 3 -СО- .

4. Взаимодействие с аммиаком позволяет различать альдегиды и кетоны. Альдегиды выделяют воду, образуя альдимины:

ацетальдимин, этаними н

которые легко полимеризуются (циклизуются в кристаллические тримеры - альдегидаммиаки:

альдегидаммиа к

При циклизации разрывается двойная связь C = N и три молекулы имина соединяются в шестичленный цикл с чередующимися атомами углерода и азота.

Кетоны с аммиаком подобных соединений не образуют. Они реагируют очень медленно и более сложно, например, так:

5. С гидроксиламином альдегиды и кетоны, выделяя воду, образуют оксимы (альдоксимы и кетоксимы):

ацетальдоксим

ацетоноксим

Эти реакции применяют для количественного определения карбониль­ных соединений.

Механизм реакции (R=H или Alk):

6. Особый интерес представляют реакции карбонильных соединений с гидразином и его замещенными. В зависимости от условий гидразин вступает в реакцию с альдегидами и кетонами в соотношении 1:1 или 1:2. В первом случае образуются гидразоны, а во втором - азины (альдазины и кетазины):

гидразон

альдазин

кетазин

Гидразоны кетонов и альдегидов при нагревании с твердым КОН выде­ляют азот и дают предельные углеводороды (реакция Кижнера):

В настоящее время эту реакцию проводят нагреванием карбонильного соединения с гид­разином в высококипящих полярных растворителях (ди- и триэтиленгликоли) в присутствии щелочи. Реакция может быть проведена и при комнатной температуре при действии трет-бутилкалия в диметлисульфоксиде.

Альдегиды и кетоны с замещенными гидразинами - с фенилгидразином C 6 H 5 -NH-NH 2 и семикарбазидом образуют соответственно фенилгидразоны и семикарбазоны. Это кристаллические вещества. Они служат для качественного и количественного определения карбонильных соединений, а также для их выделения и очистки.

Образование фенилгидразонов:

Семикарбазоны образуются по схеме:

Реакции альдегидов и кетонов с производными гидразина по механизму аналогичны их реакциям с аммиаком и гидроксиламином. Например, для ацетальдегида и фенилгидразина:

Для этих реакций характерен кислотный катализ.

7. Альдегиды и кетоны способны присоединять по карбонильной груп­пе воду с образованием гидратов - геминальных гликолей. Эти соедине­ния во многих случаях существуют только в растворах. Положение равно­весия зависит от строения карбонилсодержащего соединения:

Так, формальдегид при 20 °С существует в водном растворе на 99,99% в форме гидрата, ацетальдегид- на 58%; в случае ацетона содержание гидрата незначительно, а хлораль и трихлорацетон образуют стойкие кри­сталлические гидраты.

Альдегиды с более высокой молекулярной массой образуют с водой устойчи­вые при низких температурах твердые полугидраты:

8.

В присутствии следов минеральной кислоты образуются ацетали:

Ацетали - жидкости с приятным эфирным запахом. При нагревании с разбавленными минеральными кислотами (но не щелочами) они подвер­гаются гидролизу с образованием спиртов и выделением альдегидов:

Ацеталь, полученный из масляного альдегида и поливинилового спир­та, используется в качестве клея при изготовлении безосколочных стекол.

Ацетали кетонов получаются более сложно - действием на кетоны этиловых эфиров ортомуравьиной НС(ОС2Н 5)з или ортокремниевой кис­лоты:

9. При действии на альдегиды спиртов образуются полуацетали:

Альдегиды и кетоны при взаимодействии с PCI 5 обменивают атом кислорода на два атома хлора, что используется для получения геминаль- ных дихлоралканов:

Эта реакция в стадии, определяющей характер конечного продукта, также является реакцией нуклеофильного присоединения:

В. Реакции окисления. Окисление альдегидов идет значительно лег­че, чем кетонов. Кроме того, окисление альдегидов приводит к образова­нию кислот без изменения углеродного скелета, в то время как кетоны окисляются с образованием двух более простых кислот или кислоты и кетона.

Альдегиды окисляются кислородом воздуха до карбоновых кислот. Промежуточными продуктами являются гидропероксиды:

Аммиачный раствор гидроксида серебра OH при легком на­гревании с альдегидами (но не с кетонами) окисляет их в кислоты с обра­зованием свободного металлического серебра. Если пробирка, в которой идет реакция, была предварительно обезжирена изнутри, то серебро ло­жится тонким слоем на ее внутренней поверхности - образуется сереб­ряное зеркало:

Эта реакция, известная под названием реакции серебряного зеркала, служит для качественного определения альдегидов.

Для альдегидов характерна также реакция с так называемой фелинговой жидкостью. Последняя представляет собой водно-щелочной рас­твор комплексной соли, образовавшейся из гидроксида меди и натрийкалиевой соли винной кислоты. При нагревании альдегидов с фелинговой жидкостью медь (II) восстанавливается до меди (I), а альдегид окисляется до кислоты:

Красная окись меди Cu 2 О почти количественно выпадает в осадок. Ре­акция эта с кетонами не идет.

Альдегиды могут быть окислены в карбоновые кислоты с помощью многих обычных окислителей, таких, как дихромат калия, перманганат ка­лия, по ионному механизму, причем первой стадией процесса обычно яв­ляется присоединение окислителя по СО-группе.

Окисление кетонов протекает с разрывом углеродной цепочки в разных направлениях в зависимости от строения кетонов.

По продуктам окисления можно судить о строении кетонов, а так как кетоны образуются при окислении вторичных спиртов, то, следовательно, и о строении этих спиртов.

Г. Реакции полимеризации. Эти реакции характерны только для аль­дегидов. При действии на альдегиды кислот происходит их тримеризация (частично и тетрамеризация):

Механизм полимеризации может быть представлен в следующем виде:

Д. Галогенирование. Альдегиды и кетоны реагируют с бромом и иодом с одинаковой скоростью независимо от концентрации галогена. Ре­акции ускоряются как кислотами, так и основаниями.

Подробное изучение этих реакций привело к выводу, что они идут с предварительным превращением карбонильного соединения в енол:

Е. Реакции конденсации.

1. Альдегиды в слабоосновной среде (в при­сутствии ацетата, карбоната или сульфита калия) подвергаются альдольной конденсации (А.П. Бородин) с образованием альдегидосииртов (гидроксиальдегидов), сокращенно называемых альдолями. Альдоли об­разуются в результате присоединения альдегида к карбонильной группе другой молекулы альдегида с разрывом связи С-Н в α-положении к кар­бонилу, как это показано на примере уксусного альдегида:

альдоль

В случае альдолизацин других альдегидов, например пропионового, в реакцию вступает только группа, находящаяся в a-положении к карбо­нилу, так как только водородные атомы этой группы в достаточной степе­ни активируются карбонильной группой:

3-гидрокси-2-метилпентаналь

Если рядом с карбонилом находится четвертичный атом углерода, альдолизация невозможна. Например, триметилуксусный альдегид (СНз)зС-СНО не дает альдоля.

Механизм реакции альдольной конденсации, катализируемой основа­ниями, следующий. Альдегид проявляет свойства СН-кислоты. Гидроксильный ион (катализатор) обратимо отрывает протон от а-углеродного атома:

Альдоль при нагревании (без водоотнимающих веществ) отщепляет воду с образованием непредельного кротонового альдегида:

Поэтому переход от предельного альдегида к непредельному через аль­доль называется кротоновой конденсацией. Дегидратация происходит благодаря очень большой подвижности водородных атомов в α-положении по отношению к карбонильной группе (сверхсопряжение), причем разрывается, как и во многих других случаях, p-связь по отношению к карбонильной группе.

При действии на альдегиды, способные к альдольной конденсации, сильных оснований (щелочей) в результате глубокой альдольной (или кротоновой) поликонденсации происходит осмоление. Альдегиды, не спо­собные к альдольной конденсации, в этих условиях вступают в реакцию Канниццаро:

2(СН 3) 3 С-СНО +КОН→(СН 3) 3 С-COOK +(СН 3) 3 С-СН 2 ОН.

Альдольная конденсация кетонов происходит в более жестких услови­ях - в присутствии оснований, например Ва(ОН) 2 . При этом образуются Р-кетоноспирты, легко теряющие молекулу воды:

В еще более жестких условиях, например при нагревании с концентри­рованной серной кислотой, кетоны подвергаются межмолекулярной де­гидратации с образованием непредельных кетонов:

окись мезитила

Окись мезитила может реагировать с новой молекулой ацетона:

форон

Возможна и конденсация между альдегидами и кетонами, например:

3-пентен-2-он

Во всех этих реакциях вначале идет альдольная конденсация, а затем де­гидратация образовавшегося гидроксикетона.

2. Сложноэфирная конденсация альдегидов проходит при действии на них алкгоголятов алюминия в неводной среде (В.Е. Тищенко).

уксусноэтиловый эфир

Ж. Декарбонилирование. Альдегиды при нагревании с трис(трифенилфосфин)родийхлоридом претерпевают декарбонилирование с образованием углеводородов:

R-СНО + [(C 6 H 5) 3 P] 3 PhCl→ R-Н + [(C 6 H 5) 3 P] 3 RhCOCl.

При изучении химических превращений альдегидов и кетонов необхо­димо обратить внимание на существенные различия между ними. Альде­гиды легко окисляются без изменения углеродной цепи (реакция серебря­ного зеркала), кетоны окисляются трудно с разрывом цепи. Альдегиды полимеризуются под влиянием кислот, образуют альдегидоаммиаки, со спиртами в присутствии кислот дают ацетали, вступают в сложноэфирную конденсацию, дают окрашивание с фуксинсернистой кислотой. Кетоны не способны к подобным превращениям.

Отдельные представители. Применение

Муравьиный альдегид (формальдегид) - бесцветный газ с резким специфическим запахом, т. кип. -21 °С. Он ядовит, действует раздражаю­ще на слизистые оболочки глаз и дыхательных путей. Хорошо растворим в воде, 40% -ный водный раствор формальдегида называется формалином. В промышленности формальдегид получают двумя методами - непол­ным окислением метана и его некоторых гомологов и каталитическим окислением или дегидрированием метанола (при 650-700 °С над сереб­ряным катализатором):

СН 3 ОН→ Н 2 +Н 2 СО.

Благодаря отсутствию алкильного радикала формальдегиду присущи некоторые особые свойства.

1. В щелочной среде он претерпевает реакцию окисления - восста­новления (реакция Канниццаро):

2. При легком нагревании формальдегида (формалина) с аммиаком получается гексаметилентетрамин (уротропин), синтезированный впер­вые А. М. Бутлеровым:

6Н 2 С=О + 4NH 3 → 6H 2 0 + (CH 2) 6 N 4

уротропин

Уротропин в больших количествах применяют в производстве фенолформальдегидных смол, взрывчатых веществ (гексогена, получаемого ни­трованием уротропина)

гексаген

в медицине (в качестве мочегонного средства, как составная часть антигриппозного препарата кальцекса, при лечении почечных заболеваний и др.).

3. В щелочной среде, например в присутствии известкового молока, как это впервые было показано А. М. Бутлеровым, формальдегид подвер­гается альдолизации с образованием оксиальдегидов вплоть до гексоз и еще более сложных сахаров, например:

гексоза

В присутствии щелочей формальдегид может конденсироваться и с дру­гими альдегидами, образуя многоатомные спирты. Так, конденсацией формальдегида с уксусным альдегидом получают четырехатомный спирт - пентаэритрит С(СН 2 ОН) 4

СН 3 СНО + 3Н 2 СО → (НОСН 2) 3 ССНО

(НОСН 2) 3 ССНО + Н 2 СО → (НОСН 2) 4 С + НСОО -

Пентаэритрит используется для получения смол и весьма сильного взрывчатого вещества - тетранитропентаэритрита (ТЭН) C(CH 2 ОNО 2) 4 .

4. Формальдегид способен к полимеризации с образованием циклических и линейных полимеров.

5. Формальдегид способен вступать в различные реакции конденсации с образованием синтетических смол, широко применяемых в промышленно­сти. Так, поликонденсацией формальдегида с фенолом получают фенолформальдегидные смолы, с мочевиной или меламином - карбамидные смолы.

6. Продуктом конденсации формальдегида с изобутиленом (в присут­ствии H 2 SO 4) является 4,4-диметил-1,3-диоксан, который при нагрева­нии до 200-240 °С в присутствии катализаторов (SiO 2 +Н 4 Р 2 О 7) разла­гается с образованием изопрена.

Формалин широко применяется в качестве дезинфицирующего веще­ства для дезинфекции зерно- и овощехранилищ, парников, теплиц, для протравливания семян и т. д.

Уксусный альдегид, ацетальдегид СН 3 СНО - жидкость с резким неприятным запахом. Т.кип. 21 °С. Пары ацетальдегида вызывают раздра­жение слизистых оболочек, удушье, головную боль. Ацетальдегид хорошо растворим в воде и во многих органических растворителях.

Промышленные методы получения ацетальдегида уже были рассмот­рены: гидратация ацетилена, дегидрирование этилового спирта, изомери­зация окиси этилена, каталитическое окисление воздухом предельных углеводородов.

В последнее время ацетальдегид получают окислением этилена кисло­родом воздуха в присутствии катализатора по схеме:

CH 2 =CH 2 +H 2 O +PdCl 2 →CH 3 -СНО + 2HCl + Pd

Pd + 2CuC1 2 → 2CuCl + PdCl 2

2CuCl + 2HCI + 1 / 2 O 2 → 2CuCI 2 + H 2 O

2CH 2 = CH 2 + O 2 →2CH 3 CHO

Другие 1-алкены образуют в этой реакции метилкетоны.

Из ацетальдегида в промышленных масштабах получают уксусную кис­лоту, уксусный ангидрид, этиловый спирт, альдоль, бутиловый спирт, ацетали, этилацетат, пентаэритрит и ряд других веществ.

Подобно формальдегиду, он конденсируется с фенолом, аминами и дру­гими веществами, образуя синтетические смолы, которые используются в производстве различных полимерных материалов.

Под действием небольшого количества серной кислоты ацетальдегид полимеризуется в паральдегид (С 2 Н 4 О 3) 3 и метальдегид (С 2 Н 4 О 3) 4 ; количе­ства последнего возрастают с понижением температуры (до -10 °С):

Паральдегид - жидкость с т. кип. 124,5 °С, метальдегид - кристал­лическое вещество. При нагревании со следами кислоты оба эти вещества деполимеризуются, образуя ацетальдегид. Из паральдегида и аммиака по­лучают 2-метил-5-винилпиридин, используемый при синтезе сополимеров - синтетических каучуков.

Трихлоруксусный альдегид, хлораль CCI 3 CHO, получают хлориро­ванием этилового спирта.

Хлораль - бесцветная жидкость с резким запахом; с водой образует кристаллический гидрат - хлоральгидрат. Устойчивость хлоральгидрата объясняется усилением электроноакцепторных свойств карбонильного углерода под влиянием сильного индукционного эффекта хлора:

Обладает снотворным действием. Конденсацией хлораля с хлорбензо­лом получают в промышленных масштабах инсектициды.

При действии на хлораль щелочей образуется хлороформ:

Ацетон СН 3 СОСН 3 - бесцветная жидкость с характерным запахом; Т.кип.=56,1 °С, Т.пл.=0,798. Хорошо растворим в воде и во многих органиче­ских растворителях.

Ацетон получают:

1) из изопропилового спирта - окислением или дегидрированием;

2) окислением изопропилбензола, получаемого алкилированием бен­зола, наряду с фенолом;

3) ацетон-бутанольным брожением углеводов.

Ацетон в качестве растворителя применяется в больших количе­ствах в лакокрасочной промышленности, в производствах ацетатного шелка, кинопленки, бездымного пороха (пироксилина), для растворения ацетилена (в баллонах) и т. д. Он служит исходным продуктом при произ­водстве небьющегося органического стекла, кетена и т. д.

Среди кислородсодержащих органических соединений огромное значение имеют целых два класса веществ, которые всегда изучают вместе за схожесть в строении и проявляемых свойствах. Это альдегиды и кетоны. Именно эти молекулы лежат в основе многих химических синтезов, а их строение достаточно интересное, чтобы стать предметом изучения. Рассмотрим подробнее, что же представляют собой эти классы соединений.

Альдегиды и кетоны: общая характеристика

С точки зрения химии, к классу альдегидов следует относить органические молекулы, содержащие кислород в составе функциональной группы -СОН, называемой карбонильной. Общая формула в этом случае будет выглядеть так: R-COH. По своей природе это могут быть как предельные, так и непредельные соединения. Также среди них встречаются и ароматические представители, наравне с алифатическими. Количество атомов углерода в радикальной цепи варьируется в достаточно широких пределах, от одного (формальдегид или метаналь) до нескольких десятков.

Кетоны также содержат карбонильную группу -СО, однако соединена она не с катионом водорода, а с другим радикалом, отличным или идентичным тому, что входит в цепь. Общая формула выглядит так: R-CO-R , . Очевидно, что альдегиды и кетоны схожи по наличию функциональной группы такого состава.

Кетоны также могут быть предельными и непредельными, да и проявляемые свойства сходны с близкородственным классом. Можно привести несколько примеров, иллюстрирующих состав молекул и отражающих принятые обозначения формул рассматриваемых веществ.

  1. Альдегиды: метаналь - НСОН, бутаналь - СН 3 -СН 2 -СН 2 -СОН, фенилуксусный - С 6 Н 5 -СН 2 -СОН.
  2. Кетоны: ацетон или диметилкетон - СН 3 -СО-СН 3 , метилэтилкетон - СН 3 -СО-С 2 Н 5 и другие.

Очевидно, что название данных соединений образуется двумя путями:

  • по рациональной номенклатуре согласно входящим в состав радикалам и классового суффикса -аль (для альдегидов) и -он (для кетонов);
  • тривиально, исторически сложившееся.

Если привести общую формулу для обоих классов веществ, то станет видно, что они являются изомерами друг другу: C n H 2n O. Для них же самих характерны следующие виды изомерии:


Чтобы различать между собой представителей обоих классов, используют качественные реакции, большинство из которых позволяют выявить именно альдегид. Так как химическая активность данных веществ несколько выше, благодаря наличию катиона водорода.

Строение молекулы

Рассмотрим, как же в пространстве выглядят альдегиды и кетоны. Строение их молекул можно отразить несколькими пунктами.

  1. Атом углерода, непосредственно входящий в функциональную группу, имеет sp 2 - гибридизацию, что позволяет части молекулы иметь плоскую пространственную форму.
  2. При этом полярность связи С=О сильна. Как более электроотрицательный, кислород забирает себе основную часть плотности, концентрируя на себе частично отрицательный заряд.
  3. В альдегидах связь О-Н является также сильно поляризованной, что делает атом водорода подвижным.

В результате получается, что подобное строение молекул позволяет рассматриваемым соединениям и окисляться, и восстанавливаться. Формула альдегида и кетона с перераспределенной электронной плотностью позволяет предсказать продукты реакций, в которых участвуют данные вещества.

История открытия и изучения

Как и многие органические соединения, выделить и изучить альдегиды и кетоны людям удалось лишь в XIX веке, когда виталистические взгляды полностью рухнули и стало понятно, что эти соединения могут образовываться синтетическим, искусственным путем, без участия живых существ.

Однако еще в 1661 году Р. Бойль сумел получить ацетон (диметилкетон), когда подвергал нагреванию ацетат кальция. Но подробно изучить это вещество и назвать его, определить систематическое положение среди других, он не смог. Лишь в 1852 году Уильямсон сумел довести это дело до конца, тогда и началась история подробного развития и накопления знаний о карбонильных соединениях.

Физические свойства

Рассмотрим, каковы физические свойства альдегидов и кетонов. Начнем с первых.

  1. Первый представитель метаналь по агрегатному состоянию - газ, следующие одиннадцать - жидкости, свыше 12 атомов углерода входят в состав твердых альдегидов нормального строения.
  2. Температура кипения: зависит от числа атомов С, чем их больше, тем она выше. При этом чем более разветвлена цепочка, тем ниже опускается значение температуры.
  3. Для жидких альдегидов показатели вязкости, плотности, преломления зависят также от числа атомов. Чем их больше, тем они выше.
  4. Газообразный и жидкие альдегиды растворяются в воде очень хорошо, однако твердые практически не могут этого делать.
  5. Запах представителей очень приятный, часто это ароматы цветов, духов, фруктов. Лишь те альдегиды, в которых количество атомов углерода равно 1-5, являются сильно и неприятно пахнущими жидкостями.

Если обозначать свойства кетонов, то также можно выделить главные.

  1. Агрегатные состояния: низшие представители - жидкости, более массивные - твердые соединения.
  2. Запах резкий, неприятный у всех представителей.
  3. Растворимость в воде хорошая у низших, в органических растворителях отличная у всех.
  4. Летучие вещества, данный показатель превышает таковой у кислот, спиртов.
  5. Температура кипения и плавления зависит от строения молекулы, сильно варьируется от количества атомов углерода в цепи.

Это основные свойства рассматриваемых соединений, которые относятся к группе физических.

Химические свойства

Самое важное, это с чем реагируют альдегиды и кетоны, химические свойства данных соединений. Поэтому их мы рассмотрим обязательно. Сначала разберемся с альдегидами.

  1. Окисление до соответствующих карбоновых кислот. Общий вид уравнения реакции: R-COH + [O] = R-COOH. Ароматические представители еще легче вступают в подобные взаимодействия, также они способны формировать в результате сложные эфиры, имеющие важное промышленное значение. В качестве окислителей используют: кислород, реактив Толленса, гидроксид меди (II) и другие.
  2. Альдегиды проявляют себя как сильные восстановители, при этом превращаясь в предельные одноатомные спирты.
  3. Взаимодействие со спиртами с образованием продуктов ацеталей и полуацеталей.
  4. Особые реакции - поликонденсации. В результате образуются фенолформальдегидные смолы, имеющие значение для химической промышленности.
  5. Несколько специфических реакций со следующими реактивами:
  • водно-спиртовая щелочь;
  • реактив Гриньяра;
  • гидросульфиты и прочие.

Качественной реакцией на данный класс веществ является реакция "серебряного зеркала". В результате нее образуется металлическое восстановленное серебро и соответствующая карбоновая кислота. Для нее необходим аммиачный раствор оксида серебра или реактив Толлинса.

Химические свойства кетонов

Спирты, альдегиды, кетоны являются схожими по проявляемым свойствам соединениями, так как все они кислородсодержащие. Однако уже на стадии окисления становится ясно, что спирты - самые активные и легко поддающиеся воздействию соединения. Кетоны же окислить труднее всего.

  1. Окислительные свойства. В результате образуются вторичные спирты.
  2. Гидрирование также приводит к упомянутым выше продуктам.
  3. Кето-енольная таутомерия - особое специфическое свойство кетонов принимать бета-форму.
  4. Реакции альдольной конденсации с образование бета-кетоспиртов.
  5. Также кетоны способны взаимодействовать с:
  • аммиаком;
  • синильной кислотой;
  • гидросульфитами;
  • гидразином;
  • ортокремниевой кислотой.

Очевидно, что реакции таких взаимодействий очень сложны, особенно те, которые являются специфическими. Это все основные особенности, которые проявляют альдегиды и кетоны. Химические свойства лежат в основе многих синтезов важных соединений. Поэтому знать природу молекул и их характер при взаимодействиях крайне необходимо в промышленных процессах.

Реакции присоединения альдегидов и кетонов

Мы уже рассмотрели данные реакции, однако не давали им такого названия. К присоединению можно отнести все взаимодействия, в результате которых активность проявила карбонильная группа. А точнее, подвижный атом водорода. Именно поэтому в данном вопросе преимущество отдается именно альдегидам, вследствие их лучшей реакционноспособности.

С какими веществами возможны реакции альдегидов и кетонов по нуклеофильному замещению? Это:

  1. Синильная кислота, образуются циангидрины - исходное сырье при синтезе аминокислот.
  2. Аммиак, амины.
  3. Спирты.
  4. Воду.
  5. Гидросульфат натрия.
  6. Реактив Гриньяра.
  7. Тиолы и другие.

Эти реакции имеют важное промышленное значение, поскольку продукты используются в разных областях жизнедеятельности людей.

Способы получения

Существует несколько основных методов, которыми синтезируют альдегиды и кетоны. Получение в лаборатории и промышленности можно выразить в следующих способах.

  1. Самым распространенным методом, в том числе и в лабораториях, является окисление соответствующих спиртов: первичных до альдегидов, вторичных до представителей кетонов. В качестве окислительного агента могут выступать: хроматы, ионы меди, перманганат калия. Общий вид реакции: R-OH + Cu (KMnO 4) = R-COH.
  2. В промышленности часто используют способ, основанный на окислении алкенов - оксосинтез. Основной агент синтез-газ, смесь СО 2 + Н 2 . Результатом становится альдегид с большим на один углерод числом атомов в цепи. R=R-R + СО 2 + Н 2 = R-R-R-COH.
  3. Окисление алкенов озоном - озонолиз. Результат также предполагает альдегид, но кроме этого еще и кетон в смеси. Если продукты мысленно соединить, убрав кислород, станет ясно, какой исходный алкен был взят.
  4. Реакция Кучерова - гидратация алкинов. Обязательный агент - соли ртути. Один из промышленных способов синтеза альдегидов и кетонов. R≡R-R + Hg 2+ + H 2 O = R-R-COH.
  5. Гидролиз дигалогенпроизводных углеводородов.
  6. Восстановление: карбоновых кислот, амидов, нитрилов, хлорангидридов, сложных эфиров. В результате образуется как альдегид, так и кетон.
  7. Пиролиз смесей карбоновых кислот над катализаторами в виде оксидов металлов. Смесь должна быть парообразной. Суть заключается в отщеплении между молекулами диоксида углерода и воды. В результате образуется альдегид или кетон.

Ароматические альдегиды и кетоны получают иными способами, так как данные соединения имеют ароматический радикал (фенил, например).

  1. По Фриделю-Крафтсу: в исходных реагентах ароматический углеводород и дигалогензамещенный кетон. Катализатор - ALCL 3 . В результате образуется ароматический альдегид или кетон. Другое название процесса - ацилирование.
  2. Окисление толуола действием разных агентов.
  3. Восстановлением ароматических карбоновых кислот.

Естественно, что в промышленности стараются использовать те методы, в которых исходное сырье как можно более дешевое, а катализаторы менее токсичные. Для синтеза альдегидов - это окисление алкенов кислородом.

Применение в промышленности и значение

Применение альдегидов и кетонов осуществляется в таких отраслях промышленности, как:

  • фармацевтика;
  • химический синтез;
  • медицина;
  • парфюмерная область;
  • пищевая промышленность;
  • лакокрасочное производство;
  • синтез пластмасс, тканей и прочее.

Можно обозначить еще не одну область, ведь ежегодно только формальдегида синтезируется приблизительно 6 млн т в год! Его 40% раствор именуется формалином и используется для хранения анатомических объектов. Он же идет на изготовление лекарственных препаратов, антисептиков и полимеров.

Уксусный альдегид, или этаналь, также массово производимый продукт. Количество ежегодного потребления в мире составляет около 4 млн т. Он - основа многих химических синтезов, при которых образуются важные продукты. Например:

  • уксусная кислота и ее ангидрид;
  • ацетат целлюлозы;
  • лекарства;
  • бутадиен - основа каучука;
  • ацетатное волокно.

Ароматические альдегиды и кетоны - это составная часть многих ароматизаторов, как пищевых, так и парфюмерных. Большинство из них имеют очень приятные цветочные, цитрусовые, травяные ароматы. Это позволяет изготовлять на их основе:

  • освежители воздуха различного рода;
  • туалетные и парфюмерные воды;
  • различные чистящие и моющие средства.

Некоторые из них являются ароматическими добавками к пище, разрешенными к употреблению. Их природное содержание в эфирных маслах, фруктах и смолах доказывают возможность подобного использования.

Отдельные представители

Такой альдегид, как цитраль, представляет собой жидкость с большой вязкостью и сильным ароматом лимона. В природе содержится как раз в эфирных маслах последнего. Также в составе эвкалипта, сорго, кебаба.

Хорошо известны области его применения:

  • педиатрия - понижение внутричерепного давления;
  • нормализация артериального давления у взрослых;
  • компонент лекарства для органов зрения;
  • составная часть многих душистых веществ;
  • противовоспалительное средство и антисептик;
  • сырье для синтеза ретинола;
  • ароматизатор в пищевых целях.

Строение альдегидов и кетонов

Альдегиды - органические вещества, молеку­лы которых содержат карбонильную группу :

соединенную с атомом водорода и углеводородным радикалом. Общая формула альдегидов имеет вид:

В простейшем альдегиде - роль углеводородного радикала играет другой атом водорода:


Формальдегид

Карбонильную группу, связанную с атомом во­дорода, часто называют альдегидной :

Кетоны - органические вещества, в молеку­лах которых карбонильная группа связана с двумя углеводородными радикалами. Очевидно, общая формула кетонов имеет вид:

Карбонильную группу кетонов называют кето-группой .

В простейшем кетоне - ацетоне - карбониль­ная группа связана с двумя метильными радика­лами:

Номенклатура и изомерия альдегидов и кетонов

В зависимости от строения углеводородного ра­дикала, связанного с альдегидной группой, различают предельные, непредельные, ароматические, гетероциклические и другие альдегиды :


В соответствии с номенклатурой ИЮПАК на­звания предельных альдегидов образуются от на­звания алкана с тем же числом атомов углерода с молекуле с помощью суффикса -аль . Например:


Нумерацию атомов углерода главной цепи на­чинают с атома углерода альдегидной группы. По­этому альдегидная группа всегда располагается при первом атоме углерода, и указывать ее поло­жение нет необходимости.

Наряду с систематической номенклатурой ис­пользуют и тривиальные названия широко приме­няемых альдегидов. Эти названия, как правило, образованы от названий карбоновых кислот, соот­ветствующих альдегидам.

Для названия кетонов по систематической но­менклатуре кетогруппу обозначают суффиксом -он и цифрой, которая указывает номер атома углеро­да карбонильной группы (нумерацию следует на­чинать от ближайшего к кетогруппе конца цепи).

Например:

Для альдегидов характерен только один вид структурной изомерии - изомерия углеродно­го скелета , которая возможна с бутаналя, а для кетонов - также и изомерия положения карбо­нильной группы . Кроме этого, для них характер­на и межклассовая изомерия (пропаналь и пропанон).

Физические свойства альдегидов и кетонов

В молекуле альдегида или кетона вследствие большей электроотрицательности атома кислоро­да по сравнению с углеродным атомом связь С=O сильно поляризована за счет смещения электрон­ной плотности π-связи к кислороду:

Альдегиды и кетоны - полярные вещества с избыточной электронной плотностью на атоме кислорода . Низшие члены ряда альдегидов и ке­тонов (формальдегид, уксусный альдегид, ацетон) растворимы в воде неограниченно. Их температу­ры кипения ниже, чем у соответствующих спир­тов. Это связано с тем, что в молекулах альдегидов и кетонов в отличие от спиртов нет подвижных атомов водорода и они не образуют ассоциатов за счет водородных связей.

Низшие альдегиды име­ют резкий запах; у альдегидов, содержащих от четырех до шести атомов углерода в цепи, непри­ятный запах; высшие альдегиды и кетоны обла­дают цветочными запахами и применяются в пар­фюмерии.

Наличие альдегидной группы в молекуле опре­деляет характерные свойства альдегидов.

Реакции восстановления.

1. Присоединение водорода к молекулам альде­гидов происходит по двойной связи в карбониль­ной группе:

Продуктом гидрирования альдегидов являются первичные спирты, кетонов - вторичные спирты.

Так, при гидрировании уксусного альдегида на никелевом катализаторе образуется этиловый спирт, при гидрировании ацетона - пропанол-2.

2. Гидрирование альдегидов - реакция восста­новления, при которой понижается степень окис­ления атома углерода, входящего в карбонильную группу.

Реакции окисления.

Альдегиды способны не только восстанавливаться, но и окисляться. При окислении альдегиды образуют карбоновые кисло­ты. Схематично этот процесс можно представить так:

1. Окисление кислородом воздуха. Например, из пропионового альдегида (пропаналя) образуется пропионовая кислота:

2. Окисление слабыми окислителями (аммиач­ный раствор оксида серебра). В упрощенном виде этот процесс можно выразить уравнением реак­ции:

Например:

Более точно этот процесс отражают уравнения:

Если поверхность сосуда, в котором проводит­ся реакция, была предварительно обезжирена, то образующееся в ходе реакции серебро покрывает ее ровной тонкой пленкой. Поэтому эту реакцию называют реакцией «серебряного зеркала». Ее ши­роко используют для изготовления зеркал, сереб­рения украшений и елочных игрушек.

3. Окисление свежеосажденным гидроксидом меди (II). Окисляя альдегид, Cu 2+ восстанавливает­ся до Cu + . Образующийся в ходе реакции гидрок­сид меди (I) CuOH сразу разлагается на оксид ме­ди (I) красного цвета и воду.

Эта реакция, так же как и реакция «серебряно­го зеркала », используется для обнаружения альде­гидов.

Кетоны не окисляются ни кислородом воздуха, ни таким слабым окислителем, как аммиачный раствор оксида серебра.

Химические свойства альдегидов и кислот - конспект

Отдельные представители альдегидов и их значение

Формальдегид (метаналь, муравьиный альдегид HCHO) - бесцветный газ с резким запахом и тем­пературой кипения -21 °С, хорошо растворим в во­де. Формальдегид ядовит! Раствор формальдегида в воде (40 %) называют фор­малином и применяют для формальдегид и уксусной дезинфекции. В сельском хозяйстве формалин использу­ют для протравливания семян, в кожевенной промышленности - для обра­ботки кож. Формальдегид используют для получе­ния уротропина - лекарственного вещества. Иногда спрессованный в виде брикетов уротропин применя­ют в качестве горючего (сухой спирт). Большое ко­личество формальдегида расходуется при получении фенолформальдегидных смол и некоторых других веществ.

Уксусный альдегид (этаналь, ацетальдегид CH 3 CHO) - жидкость с резким, неприятным за­пахом и температурой кипения 21 °С, хорошо рас­творим в воде. Из уксусного альдегида в промыш­ленных масштабах получают уксусную кислоту и ряд других веществ, он используется для произ­водства различных пластмасс и ацетатного волок­на. Уксусный альдегид ядовит !

Группа атомов -

Называется карбоксиль­ной группой , или карбоксилом.

Органические кислоты, содержащие в молеку­ле одну карбоксильную группу, являются одноос­новными .

Общая формула этих кислот RCOOH, например:

Карбоновые кислоты, содержащие две кар­боксильные группы, называются двухосновными . К ним относятся, например, щавелевая и янтар­ная кислоты:

Существуют и многоосновные карбоновые кис­лоты, содержащие более двух карбоксильных групп. К ним относится, например, трехосновная лимонная кислота:

В зависимости от природы углеводородного ра­дикала карбоновые кислоты делятся на предель­ные, непредельные, ароматические .

Предельными , или насыщенными, карбоновы­ми кислотами являются, например, пропановая (пропионовая) кислота:

или уже знакомая нам янтарная кислота.

Очевидно, что предельные карбоновые кислоты не содержат π-связей в углеводородном радикале.

В молекулах непредельных карбоновых кислот карбоксильная группа связана с ненасыщенным, не­предельным углеводородным радикалом, например, в молекулах акриловой (пропеновой)

СН 2 =СН-СООН

или олеиновой

СН 3 -(СН 2) 7 -СН=СН-(СН 2) 7 -СООН

и других кислот.

Как видно из формулы бензойной кислоты, она является ароматической , так как содержит в моле­куле ароматическое (бензольное) кольцо:

Название карбоновой кислоты образуется от на­звания соответствующего алкана (алкана с тем же числом атомов углерода в молекуле) с добавлени­ем суффикса -ов , окончания -ая и слова кислота . Нумерация атомов углерода начинается с карбок­сильной группы . Например:

Количество карбоксильных групп указывается в названии префиксами ди-, три-, тетра- :

Многие кислоты имеют и исторически сложив­шиеся, или тривиальные, названия.

Состав предельных одноосновных карбоновых кислот будет выражаться общей формулой С n Н 2n O 2 , или С n Н 2n+1 СOOН , или RСООН .

Физические свойства карбоновых кислот

Низшие кислоты, т. е. кислоты с относитель­но небольшой молекулярной массой, содержащие в молекуле до четырех атомов углерода, - жидко­сти с характерным резким запахом (например, за­пах уксусной кислоты). Кислоты, содержащие от 4 до 9 атомов углерода, - вязкие маслянистые жид­кости с неприятным запахом; содержащие более 9 атомов углерода в молекуле - твердые вещества, которые не растворяются в воде. Температуры ки­пения предельных одноосновных карбоновых кис­лот увеличиваются с ростом числа атомов углерода в молекуле и, следовательно, с ростом относитель­ной молекулярной массы. Так, температура кипе­ния муравьиной кислоты равна 100,8 °С, уксус­ной - 118 °С, пропионовой - 141 °С.

Простейшая карбоновая кислота - муравьиная НСООН, имея небольшую относительную молеку­лярную массу (М r (НСООН) = 46), при обычных уcловиях является жидкостью с температурой кипе­ния 100,8 °С. В то же время бутан (M r (C 4 H 10) = 58) в тех же условиях газообразен и имеет температу­ру кипения -0,5 °С. Это несоответствие темпера­тур кипения и относительных молекулярных масс объясняется образованием димеров карбоновых кислот , в которых две молекулы кислоты связаны двумя водородными связями :

Возникновение водородных связей становится понятным при рассмотрении строения молекул карбоновых кислот.

Молекулы предельных одноосновных карбоно­вых кислот содержат полярную группу атомов - карбоксил

И практически неполярный углеводородный радикал . Карбоксильная группа притягивается молекулами воды, образуя с ними водородные связи:

Муравьиная и уксусная кислоты растворимы в воде неограниченно. Очевидно, что с увеличени­ем числа атомов в углеводородном радикале рас­творимость карбоновых кислот снижается.

Химические свойства карбоновых кислот

Общие свойства, характерные для класса кислот (как органических, так и неорганических), обусловлены наличием в молекулах гидроксильной группы, содержащей сильную полярную связь между атома­ми водорода и кислорода. Рассмотрим эти свойства на примере растворимых в воде органических кислот.

1. Диссоциация с образованием катионов водо­рода и анионов кислотного остатка:

Более точно этот процесс описывает уравнение, учитывающее участие в нем молекул воды:

Равновесие диссоциации карбоновых кислот смещено влево; подавляющее большинство их - слабые электролиты. Тем не менее, кислый вкус, например, уксусной и муравьиной кислот объяс­няется диссоциацией на катионы водорода и анио­ны кислотных остатков.

Очевидно, что присутствием в молекулах кар­боновых кислот «кислого» водорода, т. е. водорода карбоксильной группы, обусловлены и другие ха­рактерные свойства.

2. Взаимодействие с металлами , стоящими в электрохимическом ряду напряжений до водо­рода:

Так, железо восстанавливает водород из уксус­ной кислоты:

3. Взаимодействие с основными оксидами с об­разованием соли и воды:

4. Взаимодействие с гидроксидами металлов с образованием соли и воды (реакция нейтрализации):

5. Взаимодействие с солями более слабых кис­лот с образованием последних. Так, уксусная кис­лота вытесняет стеариновую из стеарата натрия и угольную из карбоната калия:

6. Взаимодействие карбоновых кислот со спир­тами с образованием сложных эфиров - реакция этерификации (одна из наиболее важных реакций, характерных для карбоновых кислот):

Взаимодействие карбоновых кислот со спирта­ми катализируется катионами водорода.

Реакция этерификации обратима. Равновесие смещается в сторону образования сложного эфира в присутствии водоотнимающих средств и при уда­лении эфира из реакционной смеси.

В реакции, обратной этерификации, которая называется гидролизом сложного эфира (взаимо­действие сложного эфира с водой), образуются кислота и спирт:

Очевидно, что реагировать с карбоновыми кис­лотами, т. е. вступать в реакцию этерификации, могут и многоатомные спирты, например, глице­рин:

Все карбоновые кислоты (кроме муравьиной) наряду с карбоксильной группой содержат в моле­кулах углеводородный остаток. Безусловно, это не может не сказаться на свойствах кислот, которые определяются характером углеводородного остат­ка.

7. Реакции присоединения по кратной связи - в них вступают непредельные карбоновые кислоты. Например, реакция присоединения водорода - ги­дрирование. Для кислоты, содержащей в радикале одну л-связь, можно записать уравнение в общем виде:

Так, при гидрировании олеиновой кислоты об­разуется предельная стеариновая кислота:

Непредельные карбоновые кислоты, как и дру­гие ненасыщенные соединения, присоединяют галогены по двойной связи. Так, например, акрило­вая кислота обесцвечивает бромную воду:

8. Реакции замещения (с галогенами) - в них способны вступать предельные карбоновые кисло­ты. Например, при взаимодействии уксусной кис­лоты с хлором могут быть получены различные хлорпроизводные кислоты:

Химические свойства карбоновый кислот - конспект

Отдельные представители карбоновых кислот и их значение

Муравьиная (метановая) кислота HCOOH - жидкость с резким запахом и темпе­ратурой кипения 100,8 °C, хорошо растворима в воде.

Муравьиная кислота ядови­та, при попадании на кожу вызывает ожоги! Жалящая жидкость, выделяемая мура­вьями, содержит эту кислоту.

Муравьиная кислота обладает дезинфицирующим свойством и поэтому находит свое применение в пищевой, кожевенной и фармацевтической промышленностях, медицине. Она ис­пользуется при крашении тканей и бумаги.

Уксусная (этановая) кислота CH 3 COOH - бес­цветная жидкость с характерным резким запа­хом, смешивается с водой в любых отношениях. Водные растворы уксусной кислоты поступают в продажу под названием уксуса (3-5 % -й раствор) и уксусной эссенции (70-80 %-й раствор) и широ­ко используются в пищевой промышленности. Ук­сусная кислота - хороший растворитель многих органических веществ и поэтому используется при крашении, в кожевенном производстве, в лакокра­сочной промышленности. Кроме этого, уксусная кислота является сырьем для получения многих важных в техническом отношении органических соединений: например, на ее основе получают ве­щества, используемые для борьбы с сорняками, - гербициды. Уксусная кислота является основным компонентом винного уксуса, характерный запах которого обусловлен именно ею. Она продукт окис­ления этанола и образуется из него при хранении вина на воздухе.

Важнейшими представителями высших пре­дельных одноосновных кислот являются пальми­тиновая C 15 H 31 COOH и стеариновая C 17 H 35 COOH кислоты . В отличие от низших кислот эти веще­ства твердые, плохо растворимы в воде.

Однако их соли - стеараты и пальмитаты - хо­рошо растворимы и обладают моющим действием, поэтому их еще называют мылами. Понятно, что эти вещества производят в больших масштабах.

Из непредельных высших карбоновых кислот наибольшее значение имеет олеиновая кислота C 17 H 33 COOH, или CH 3 - (CH 2) 7 - CH = CH -(CH 2) 7 COOH. Это маслоподобная жидкость без вкуса и запаха. Широкое применение в технике находят ее соли.

Простейшим представителем двухосновных карбоновых кислот является щавелевая (этандиовая) кислота HOOC-COOH, соли которой встре­чаются во многих растениях, например в щавеле и кислице. Щавелевая кислота - это бесцветное кристаллическое вещество, хорошо растворяет­ся в воде. Она применяется при полировке ме­таллов, в деревообрабатывающей и кожевенной промышленностях.

Справочный материал для прохождения тестирования:

Таблица Менделеева

Таблица растворимости