Газ в атмосфере земли. Земная атмосфера

Атмосфера - это воздушная оболочка, которая окружает Землю и связанная с ней силой тяжести. Атмосфера участвует в суточном вращении и годовом движении нашей планеты. Воздух атмосферы - смесь газов, в котором находятся во взвешенном состоянии жидкие (капельки воды) и твердые частицы (дым, пыль). Газовый состав атмосферы является неизменным до высоты 100-110 км, что обусловлено равновесием в природе. Объемные доли газов составляют: азот - 78%, кислород - 21%, инертные газы (аргон, ксенон, криптон) - 0,9%, углерод - 0,03%. Кроме того, в атмосфере всегда присутствует водяной пар.

Кроме биологических процессов, кислород, азот и углерод активно участвуют в химическом выветривании горных пород. Очень важна роль озона 03 поглощающий большую часть ультрафиолетового излучения Солнца, в больших дозах опасен для живых организмов. Твердые частицы, которых особенно много над городами, служат ядрами конденсации (вокруг них образуются капли воды и снежинки).

Высота, границы и строение атмосферы

Верхнюю границу атмосферы условно проводят на высоте около 1000 км, хотя она прослеживается гораздо выше - до 20 000 км, но там она очень разрежена.

Через различный характер изменений температуры воздуха с высотой, других физических свойств в атмосфере выделяют несколько частей, которые отделяются друг от друга переходными слоями.

Тропосфера - самый низкий и плотный слой атмосферы. Его верхнюю границу проводят на высоте 18 км над экватором и 8-12 км - над полюсами. Температура в тропосфере снижается в среднем на 0,6 ° С на каждые 100 м. Для нее характерны значительные горизонтальные различия в распределении температуры, давления, скорости ветра, а также образование облаков и осадков. В тропосфере происходит интенсивный вертикальное движение воздуха - конвекция. Именно в этом нижнем слое атмосферы в основном формируется погода. Здесь сосредоточена почти вся водяной пар атмосферы.

Стратосфера распространяется в основном до высоты 50 км. Концентрация озона на высоте 20-25 км достигает наибольших значений, образуя озоновый экран. Температура воздуха в стратосфере, как правило, повышается с высотой в среднем на 1-2 ° С на 1 км, достигая на верхней границе 0 ° С и выше. Это происходит за счет поглощения озоном солнечной энергии. В стратосфере почти нет водяного пара и облаков, а ураганные ветры дуют со скоростью до 300- 400 км / ч.

В мезосфере температура воздуха снижается до -60 ...- 100 ° С, происходят интенсивные вертикальные и горизонтальные перемещения воздуха.

В верхних слоях термосферы, где воздух очень ионизированный, температура вновь повышается до 2000 ° С. Здесь наблюдаются полярные сияния и магнитные бури.

Атмосфера играет большую роль в жизни Земли. Она предотвращает чрезмерное нагревание земной поверхности днем и охлаждению ее ночью, перераспределяет влагу на Земле, защищает ее поверхность от падений метеоритов. Наличие атмосферы является непременным условием существования органической жизни на нашей планете.

Солнечная радиация. Нагрев атмосферы

Солнце излучает огромное количество энергии, только маленькую долю которой получает Земля.

Излучение Солнцем света и тепла называют солнечной радиацией. Солнечная радиация, прежде чем достичь земной поверхности, проходит долгий путь в атмосфере. Преодолевая его, она в значительной мере поглощается и рассеивается воздушной оболочкой. Радиацию, которая непосредственно достигает земной поверхности в виде прямых лучей, называют прямой радиацией. Часть радиации, рассеивается в атмосфере, также попадает на поверхность Земли в форме рассеянной радиации.

Совокупность прямой и рассеянной радиации, поступающей на горизонтальную поверхность, называют суммарной солнечной радиацией. Атмосфера поглощает порядка 20% солнечной радиации, поступающей на ее верхнюю границу. Еще 34% радиации отражается от поверхности Земли и атмосферы (отраженная радиация). 46% солнечной радиации поглощает земная поверхность. Такую радиацию называют поглощенной (впитанной).

Отношение интенсивности отраженной солнечной радиации интенсивности всей лучистой энергии Солнца, поступающей на верхнюю границу атмосферы, называют альбедо Земли и выражают в процентах.

Итак, альбедо нашей планеты вместе с ее атмосферой составляет в среднем 34%. Величина альбедо на разных широтах имеет значительные отличия, связанные с цветом поверхности, растительностью, облачностью и тому подобное. Участок поверхности, покрытая свежим снегом, отражает 80-85% радиации, травяной растительностью и песком - соответственно 26% и ЗО%, а водой - только 5%.

Количество солнечной энергии, получаемой отдельными участками Земли, зависит прежде всего от угла падения солнечных лучей. Чем прямовиснише они падают (т.е. большая высота Солнца над горизонтом), тем большее количество солнечной энергии попадает на единицу площади.

Зависимость величины суммарной радиации от угла падения лучей обусловлена двумя причинами. Во-первых, чем меньше угол падения солнечных лучей, тем на большую площадь распределяется этот поток света и тем меньше энергии приходится на единицу поверхности. Во-вторых, чем меньше угол падения, тем длиннее путь проходит луч в атмосфере.

На величину солнечной радиации, которая попадает на земную поверхность влияет, и прозрачность атмосферы, особенно облачность. Зависимость солнечной радиации от угла падения солнечных лучей и прозрачности атмосферы обусловливает зональный характер ее распределения. Различия в величине суммарной солнечной радиации на одной широте вызванные, в основном, облачностью.

Количество тепла, поступающего на земную поверхность, определяют в калориях на единицу площади (1 см) за единицу времени (1 год).

Поглощенная радиация расходуется на нагрев тонкого приповерхностного слоя Земли и испарения воды. Нагретая земная поверхность передает тепло в окружающую среду благодаря излучению, теплопроводности, конвекции и конденсации водяного пара.

Изменения температуры воздуха в зависимости от географической широты места и от высоты над уровнем океана

Суммарная радиация уменьшается от экваториально-тропических широт к полюсам. Она максимальная - около 850 Дж / м2 в год (200 ккал / см2 в год) - в тропических пустынях, где прямая солнечная, радиация через большую высоту Солнца и безоблачное небо интенсивная. В летнее полугодие различия в поступлении суммарной солнечной радиации между низкими и высокими широтами сглаживаются. Это происходит за счет большей продолжительности освещения Солнцем, особенно в полярных районах, где полярный день длится даже полгода.

Хотя суммарная солнечная радиация, поступающая на земную поверхность, частично отражается ней, однако большая ее часть поглощается земной поверхностью и превращается в теплоту. Часть суммарной радиации, остается после ее расходы на отражение и на тепловое излучение земной поверхности, называется радиационным балансом (остаточной радиацией). В целом за год всюду на Земле он положительный, за исключением высоких ледяных пустынь Антарктиды и Гренландии. Радиационный баланс закономерно уменьшается по направлению от экватора к полюсам, где он близок к нулю.

Соответственно и температура воздуха распределяется зонально, то есть уменьшается в направлении от экватора к полюсам. .Температура Воздуха зависит также от высоты местности над уровнем моря: чем выше местность, тем температура ниже.

Существенное влияние на температуру воздуха распределение суши и воды. Поверхность суши быстро нагревается, но быстро и охлаждается, а поверхность воды нагревается медленнее, однако дольше сохраняет тепло и медленнее отдает его в воздух.

В результате различной интенсивности нагрева и охлаждения поверхности Земли днем и ночью, в теплую и холодную времени года, температура воздуха меняется в течение суток и года.

Для определения температуры воздуха используют термометры. ее измеряют 8 раз в сутки и выводят среднюю за сутки. При среднесуточной температуре рассчитывают среднемесячные. Именно их, как правило, показывают на климатических картах изотермами (линиями, которые соединяют точки с одинаковой температурой за определенный промежуток времени). Для характеристики температур чаще всего берут среднемесячные январские и июльские показатели, реже годовых. ,

Атмосфера Земли

Атмосфе́ра (от. др.-греч. ἀτμός - пар и σφαῖρα - шар) - газовая оболочка (геосфера ), окружающая планету Земля . Внутренняя её поверхность покрывает гидросферу и частично кору , внешняя граничит с околоземной частью космического пространства.

Совокупность разделов физики и химии, изучающих атмосферу, принято называть физикой атмосферы . Атмосфера определяет погоду на поверхности Земли, изучением погоды занимается метеорология , а длительными вариациями климата - климатология .

Строение атмосферы

Строение атмосферы

Тропосфера

Её верхняя граница находится на высоте 8-10 км в полярных, 10-12 км в умеренных и 16-18 км в тропических широтах; зимой ниже, чем летом. Нижний, основной слой атмосферы. Содержит более 80 % всей массы атмосферного воздуха и около 90 % всего имеющегося в атмосфере водяного пара. В тропосфере сильно развиты турбулентность и конвекция , возникают облака , развиваются циклоны и антициклоны . Температура убывает с ростом высоты со средним вертикальным градиентом 0,65°/100 м

За «нормальные условия» у поверхности Земли приняты: плотность 1,2 кг/м3, барометрическое давление 101,35 кПа, температура плюс 20 °C и относительная влажность 50 %. Эти условные показатели имеют чисто инженерное значение.

Стратосфера

Слой атмосферы, располагающийся на высоте от 11 до 50 км. Характерно незначительное изменение температуры в слое 11-25 км (нижний слой стратосферы) и повышение её в слое 25-40 км от −56,5 до 0,8 °С (верхний слой стратосферы или область инверсии ). Достигнув на высоте около 40 км значения около 273 К (почти 0° С), температура остаётся постоянной до высоты около 55 км. Эта область постоянной температуры называется стратопаузой и является границей между стратосферой и мезосферой .

Стратопауза

Пограничный слой атмосферы между стратосферой и мезосферой. В вертикальном распределении температуры имеет место максимум (около 0 °C).

Мезосфера

Атмосфера Земли

Мезосфера начинается на высоте 50 км и простирается до 80-90 км. Температура с высотой понижается со средним вертикальным градиентом (0,25-0,3)°/100 м. Основным энергетическим процессом является лучистый теплообмен. Сложные фотохимические процессы с участием свободных радикалов , колебательно возбуждённых молекул и т. д. обусловливают свечение атмосферы.

Мезопауза

Переходный слой между мезосферой и термосферой. В вертикальном распределении температуры имеет место минимум (около -90 °C).

Линия Кармана

Высота над уровнем моря, которая условно принимается в качестве границы между атмосферой Земли и космосом.

Термосфера

Основная статья : Термосфера

Верхний предел - около 800 км. Температура растёт до высот 200-300 км, где достигает значений порядка 1500 К, после чего остаётся почти постоянной до больших высот. Под действием ультрафиолетовой и рентгеновской солнечной радиации и космического излучения происходит ионизация воздуха («полярные сияния ») - основные области ионосферы лежат внутри термосферы. На высотах свыше 300 км преобладает атомарный кислород.

Атмосферные слои до высоты 120 км

Экзосфера (сфера рассеяния)

Экзосфера - зона рассеяния, внешняя часть термосферы, расположенная выше 700 км. Газ в экзосфере сильно разрежен, и отсюда идёт утечка его частиц в межпланетное пространство (диссипация ).

До высоты 100 км атмосфера представляет собой гомогенную хорошо перемешанную смесь газов. В более высоких слоях распределение газов по высоте зависит от их молекулярных масс, концентрация более тяжёлых газов убывает быстрее по мере удаления от поверхности Земли. Вследствие уменьшения плотности газов температура понижается от 0 °C в стратосфере до −110 °C в мезосфере. Однако кинетическая энергия отдельных частиц на высотах 200-250 км соответствует температуре ~1500 °C. Выше 200 км наблюдаются значительные флуктуации температуры и плотности газов во времени и пространстве.

На высоте около 2000-3000 км экзосфера постепенно переходит в так называемый ближнекосмический вакуум , который заполнен сильно разреженными частицами межпланетного газа, главным образом атомами водорода. Но этот газ представляет собой лишь часть межпланетного вещества. Другую часть составляют пылевидные час­тицы кометного и метеорного происхождения. Кроме чрезвычайно разреженных пылевидных частиц, в это пространство проникает электромагнитная и корпускулярная радиация солнечного и галактического происхождения.

На долю тропосферы приходится около 80 % массы атмосферы, на долю стратосферы - около 20 %; масса мезосферы - не более 0,3 %, термосферы - менее 0,05 % от общей массы атмосферы. На основании электрических свойств в атмосфере выделяют нейтросферу и ионосферу. В настоящее время считают, что атмосфера простирается до высоты 2000-3000 км.

В зависимости от состава газа в атмосфере выделяют гомосферу и гетеросферу . Гетеросфера - это область, где гравитация оказывает влияние на разделение газов, так как их перемешивание на такой высоте незначительно. Отсюда следует переменный состав гетеросферы. Ниже её лежит хорошо перемешанная, однородная по составу часть атмосферы, называемая гомосфера . Граница между этими слоями называется турбопаузой , она лежит на высоте около 120 км.

Физические свойства

Толщина атмосферы - примерно 2000 - 3000 км от поверхности Земли. Суммарная масса воздуха - (5,1-5,3)×10 18 кг. Молярная масса чистого сухого воздуха составляет 28,966. Давление при 0 °C на уровне моря 101,325 кПа ; критическая температура ?140,7 °C; критическое давление 3,7 МПа; C p 1,0048×10 3 Дж/(кг·К)(при 0 °C), C v 0,7159×10 3 Дж/(кг·К) (при 0 °C). Растворимость воздуха в воде при 0 °C - 0,036 %, при 25 °C - 0,22 %.

Физиологические и другие свойства атмосферы

Уже на высоте 5 км над уровнем моря у нетренированного человека появляется кислородное голодание и без адаптации работоспособность человека значительно снижается. Здесь кончается физиологическая зона атмосферы. Дыхание человека становится невозможным на высоте 15 км, хотя примерно до 115 км атмосфера содержит кислород.

Атмосфера снабжает нас необходимым для дыхания кислородом. Однако вследствие падения общего давления атмосферы по мере подъёма на высоту соответственно снижается и парциальное давление кислорода.

В лёгких человека постоянно содержится около 3 л альвеолярного воздуха. Парциальное давление кислорода в альвеолярном воздухе при нормальном атмосферном давлении составляет 110 мм рт. ст., давление углекислого газа - 40 мм рт. ст., а паров воды - 47 мм рт. ст. С увеличением высоты давление кислорода падает, а суммарное давление паров воды и углекислоты в лёгких остаётся почти постоянным - около 87 мм рт. ст. Поступление кислорода в лёгкие полностью прекратится, когда давление окружающего воздуха станет равным этой величине.

На высоте около 19-20 км давление атмосферы снижается до 47 мм рт. ст. Поэтому на данной высоте начинается кипение воды и межтканевой жидкости в организме человека. Вне герметической кабины на этих высотах смерть наступает почти мгновенно. Таким образом, с точки зрения физиологии человека, «космос» начинается уже на высоте 15-19 км.

Плотные слои воздуха - тропосфера и стратосфера - защищают нас от поражающего действия радиации. При достаточном разрежении воздуха, на высотах более 36 км, интенсивное действие на организм оказывает ионизирующая радиация - первичные космические лучи; на высотах более 40 км действует опасная для человека ультрафиолетовая часть солнечного спектра.

По мере подъёма на всё большую высоту над поверхностью Земли, постепенно ослабляются, а затем и полностью исчезают, такие привычные для нас явления, наблюдаемые в нижних слоях атмосферы, как распространение звука, возникновение аэродинамической подъёмной силы и сопротивления, передача тепла конвекцией и др.

В разреженных слоях воздуха распространение звука оказывается невозможным. До высот 60-90 км ещё возможно использование сопротивления и подъёмной силы воздуха для управляемого аэродинамического полёта. Но начиная с высот 100-130 км знакомые каждому лётчику понятия числа М и звукового барьера теряют свой смысл, там проходит условная Линия Кармана за которой начинается сфера чисто баллистического полёта, управлять которым можно, лишь используя реактивные силы.

На высотах выше 100 км атмосфера лишена и другого замечательного свойства - способности поглощать, проводить и передавать тепловую энергию путём конвекции (т. е. с помощью перемешивания воздуха). Это значит, что различные элементы оборудования, аппаратуры орбитальной космической станции не смогут охлаждаться снаружи так, как это делается обычно на самолёте, - с помощью воздушных струй и воздушных радиаторов. На такой высоте, как и вообще в космосе, единственным способом передачи тепла является тепловое излучение .

Состав атмосферы

Состав сухого воздуха

Атмосфера Земли состоит в основном из газов и различных примесей (пыль, капли воды, кристаллы льда, морские соли, продукты горения).

Концентрация газов, составляющих атмосферу, практически постоянна, за исключением воды (H 2 O) и углекислого газа (CO 2).

Состав сухого воздуха

Азот

Кислород

Аргон

Вода

Углекислый газ

Неон

Гелий

Метан

Криптон

Водород

Ксенон

Закись азота

Кроме указанных в таблице газов, в атмосфере содержатся SO 2 , NH 3 , СО, озон , углеводороды , HCl , HF , пары Hg , I 2 , а также NO и многие другие газы в незначительных количествах. В тропосфере постоянно находится большое количество взвешенных твёрдых и жидких частиц (аэрозоль ).

История образования атмосферы

Согласно наиболее распространённой теории, атмосфера Земли во времени пребывала в четырёх различных составах. Первоначально она состояла из лёгких газов (водорода и гелия ), захваченных из межпланетного пространства. Это так называемая первичная атмосфера (около четырех миллиардов лет назад). На следующем этапе активная вулканическая деятельность привела к насыщению атмосферы и другими газами, кроме водорода (углекислым газом, аммиаком , водяным паром ). Так образовалась вторичная атмосфера (около трех миллиардов лет до наших дней). Эта атмосфера была восстановительной. Далее процесс образования атмосферы определялся следующими факторами:

    утечка легких газов (водорода и гелия) в межпланетное пространство ;

    химические реакции, происходящие в атмосфере под влиянием ультрафиолетового излучения, грозовых разрядов и некоторых других факторов.

Постепенно эти факторы привели к образованию третичной атмосферы , характеризующейся гораздо меньшим содержанием водорода и гораздо большим - азота и углекислого газа (образованы в результате химических реакций из аммиака и углеводородов).

Азот

Образование большого количества N 2 обусловлено окислением аммиачно-водородной атмосферы молекулярным О 2 , который стал поступать с поверхности планеты в результате фотосинтеза, начиная с 3 млрд лет назад. Также N 2 выделяется в атмосферу в результате денитрификации нитратов и др. азотсодержащих соединений. Азот окисляется озоном до NO в верхних слоях атмосферы.

Азот N 2 вступает в реакции лишь в специфических условиях (например, при разряде молнии). Окисление молекулярного азота озоном при электрических разрядах используется в промышленном изготовлении азотных удобрений. Окислять его с малыми энергозатратами и переводить в биологически активную форму могут цианобактерии (сине-зеленые водоросли) и клубеньковые бактерии, формирующие ризобиальный симбиоз с бобовыми растениями, т. н. сидератами.

Кислород

Состав атмосферы начал радикально меняться с появлением на Земле живых организмов , в результате фотосинтеза , сопровождающегося выделением кислорода и поглощением углекислого газа. Первоначально кислород расходовался на окисление восстановленных соединений - аммиака, углеводородов, закисной формы железа , содержавшейся в океанах и др. По окончании данного этапа содержание кислорода в атмосфере стало расти. Постепенно образовалась современная атмосфера, обладающая окислительными свойствами. Поскольку это вызвало серьезные и резкие изменения многих процессов, протекающих в атмосфере , литосфере и биосфере , это событие получило название Кислородная катастрофа .

В течение фанерозоя состав атмосферы и содержание кислорода претерпевали изменения. Они коррелировали прежде всего со скоростью отложения органических осадочных пород. Так, в периоды угленакопления содержание кислорода в атмосфере, видимо, заметно превышало современный уровень.

Углекислый газ

Содержание в атмосфере СО 2 зависит от вулканической деятельности и химических процессов в земных оболочках, но более всего - от интенсивности биосинтеза и разложения органики в биосфере Земли . Практически вся текущая биомасса планеты (около 2,4×10 12 тонн ) образуется за счет углекислоты, азота и водяного пара, содержащихся в атмосферном воздухе. Захороненная в океане , в болотах и в лесах органика превращается в уголь , нефть и природный газ . (см.Геохимический цикл углерода )

Благородные газы

Источник инертных газов - аргона , гелия и криптона - вулканические извержения и распад радиоактивных элементов. Земля в целом и атмосфера в частности обеднены инертными газами по сравнению с космосом. Считается, что причина этого заключена в непрерывной утечке газов в межпланетное пространство.

Загрязнение атмосферы

В последнее время на эволюцию атмосферы стал оказывать влияние человек . Результатом его деятельности стал постоянный значительный рост содержания в атмосфере углекислого газа из-за сжигания углеводородного топлива, накопленного в предыдущие геологические эпохи. Громадные количества СО 2 потребляются при фотосинтезе и поглощаются мировым океаном. Этот газ поступает в атмосферу благодаря разложению карбонатных горных пород и органических веществ растительного и животного происхождения, а также вследствие вулканизма и производственной деятельности человека. За последние 100 лет содержание СО 2 в атмосфере возросло на 10 %, причём основная часть (360 млрд тонн) поступила в результате сжигания топлива. Если темпы роста сжигания топлива сохранятся, то в ближайшие 50 - 60 лет количество СО 2 в атмосфере удвоится и может привести к глобальным изменениям климата .

Сжигание топлива - основной источник и загрязняющих газов (СО , NO , SO 2 ). Диоксид серы окисляется кислородом воздуха до SO 3 в верхних слоях атмосферы, который в свою очередь взаимодействует с парами воды и аммиака, а образующиеся при этом серная кислота (Н 2 SO 4 ) и сульфат аммония ((NH 4 ) 2 SO 4 ) возвращаются на поверхность Земли в виде т. н. кислотных дождей. Использование двигателей внутреннего сгорания приводит к значительному загрязнению атмосферы оксидами азота, углеводородами и соединениями свинца (тетраэтилсвинец Pb(CH 3 CH 2 ) 4 ) ).

Аэрозольное загрязнение атмосферы обусловлено как естественными причинами (извержение вулканов, пыльные бури, унос капель морской воды и пыльцы растений и др.), так и хозяйственной деятельностью человека (добыча руд и строительных материалов, сжигание топлива, изготовление цемента и т. п.). Интенсивный широкомасштабный вынос твёрдых частиц в атмосферу - одна из возможных причин изменений климата планеты.

АТМОСФЕРА - газовая оболочка Земли, состоящая, исключая воду и пыль (по объему), из азота (78,08%), кислорода (20,95%), аргона (0,93%), углекислоты (около 0,09%) и водорода, неона, гелия, криптона, ксенона и ряда др. газов (в сумме около 0,01%). Состав сухой А. на всю ее толщу практически одинаков, но в нижней части возрастает содер. воды, пыли, а у почвы - углекислоты. Нижняя граница А.- поверхность суши и воды, а верхняя фиксируется на высоте 1300 км постепенным переходом в космическое пространство. А. делится на три слоя: нижний - тропосферу, средний - стратосферу и верхний - ионосферу. Тропосфера до высоты 7-10 км (над полярными обл.) и 16-18 км (над экваториальной обл.) включает более 79% массы А., а (от 80 км и выше) всего около 0,5%. Вес столба А. определенного сечения на разных широтах и при разл. температуре несколько отличен. На широте 45° при 0° он равен весу столба ртути 760 мм, или давлению на 1 см 2 1,0333 кг.

Во всех слоях А. совершаются сложные горизонтальные (в разл. направлениях и с разными скоростями), вертикальные и турбулентные движения. Происходят поглощение солнечного и космического излучения и самоизлучение. Особо важное значение как поглотитель ультрафиолетовых лучей имеет в А. озон с общим содер. всего 0,000001% объема А., но на 60% сосредоточенный в слоях на высоте 16-32 км - озоновый , а для тропосферы - пары воды, пропускающие коротковолновое излучение и задерживающие “отраженное” длинноволновое. Последнее приводит к нагреванию нижних слоев А. В истории развития Земли состав А. не был постоянным. В архее количество CO 2 , вероятно, было много большим, a O 2 - меньшим и т. д. Геохим. и геол. роль А. как вместилища биосферы и агента гипергенеза весьма велика. Помимо А. как физ. тела существует понятие А. как величины технической для выражения давления. А. техническая равна давлению 1 кг на см 2 , 735,68 мм ртутного столба, 10 м водяного столба (при 4°С). В. И. Лебедев.

Геологический словарь: в 2-х томах. - М.: Недра . Под редакцией К. Н. Паффенгольца и др. . 1978 .

Атмосфера

Земли (от греч. atmos - пар и sphaira - * a. atmosphere; н. Atmosphare; ф. atmosphere; и. atmosfera ) - газовая оболочка, окружающая Землю и участвующая в её суточном вращении. Macca A. составляет ок. 5,15 * 10 15 т. A. обеспечивает возможность жизни на Земле и оказывает влияние на геол. процессы.
Происхождение и роль A. Cовр. A. имеет, по-видимому, вторичное происхождение; она возникла из газов, выделенных твёрдой оболочкой Земли (литосферой) после образования планеты. B течение геол. истории Земли A. претерпела значит. эволюцию под влиянием ряда факторов: диссипации (рассеяния) газовых молекул в космич. пространство, выделения газов из литосферы в результате вулканич. деятельности, диссоциации (расщепления) молекул под влиянием солнечного ультрафиолетового излучения, хим. реакций между компонентами A. и породами, слагающими земную кору, (захвата) метеорного вещества. Pазвитие A. тесно связано не только c геол. и геохим. процессами, но также c деятельностью живых организмов, в частности человека (антропогенный фактор). Изучение изменений состава A. в прошлом показало, что уже в ранних периодах фанерозоя кол-во кислорода в воздухе составляло ок. 1/3 его совр. значения. Cодержание кислорода в A. резко возросло в девоне и карбоне, когда оно, возможно, превосходило совр. . После понижения в пермском и триасовом периодах оно опять повысилось, достигнув макс. значения в юре, после чего произошло новое понижение, к-poe сохраняется в наше . Ha протяжении фанерозоя значительно менялось также и кол-во углекислого газа. Oт кембрия до палеогена CO 2 колебалась в пределах 0,1-0,4%. Понижение её до совр. уровня (0,03%) произошло в олигоцене и (после нек-рого повышения в миоцене) плиоцене. Атм. оказывают существ. влияние на эволюцию литосферы. Hапр., б.ч. углекислого газа, поступившего в A. первоначально из литосферы, была затем аккумулирована в карбонатных породах. Атм. и водяной пар являются важнейшими факторами, воздействующими на г. п. Ha протяжении всей истории Земли атм. осадки играют большую роль в процессе гипергенеза. He меньшее значение имеет деятельность ветра (см. Выветривание), переносящего мелкие разрушенных г. п. на большие расстояния. Cущественно влияют на разрушение г. п. колебания темп-ры и др. атм. факторы.
A. защищает поверхность Земли от разрушит. действия падающих камней (метеоритов), б.ч. к-рых сгорает при вхождении в её плотные . Флора и , оказавшие существ. влияние на развитие А., сами сильно зависят от атм. условий. Cлой озона в A. задерживает б.ч. ультрафиолетового излучения Cолнца, к-poe губительно действовало бы на живые организмы. Kислород A. используется в процессе дыхания животными и растениями, углекислота - в процессе питания растений. Атм. воздух - важный хим. сырья для пром-сти: напр., атм. является сырьём для получения аммиака, азотной к-ты и др. хим. соединений; кислород используют в разл. отраслях нар. x-ва. Всё большее значение приобретает освоение энергии ветра, особенно в p-нах, где отсутствуют др. энергии.
Cтроение A. Для A. характерна чётко выраженная (рис.), определяемая особенностями вертикального распределения темп-ры и плотности составляющих её газов.


Xод темп-ры весьма сложен, убывает по экспоненциальному закону (80% всей массы A. сосредоточено в тропосфере).
Переходной областью между A. и межпланетным пространством является самая внешняя её часть - экзосфера, состоящая из разрежённого водорода. Ha высотах 1-20 тыс. км гравитац. поле Земли уже не способно удерживать газ, и молекулы водорода рассеиваются в космич. пространстве. Oбласть диссипации водорода создаёт феномен геокороны. Первые же полёты искусств. спутников обнаружили, что окружена неск. оболочками заряженных частиц, газокинетич. темп-pa к-рых достигает неск. тысяч градусов. Эти оболочки получили назв. радиац. поясов. Заряженные частицы - электроны и протоны солнечного происхождения - захватываются магнитным полем Земли и вызывают в A. разл. явления, напр. полярные сияния. Pадиац. пояса составляют часть магнитосферы.
Bce параметры A. - темп-pa, давление, плотность - характеризуются значит. пространственно-временной изменчивостью (широтной, годовой, сезонной, суточной). Oбнаружена также их зависимость от вспышек на Cолнце.
Cостав A. Oсн. компонентами A. являются азот и кислород, a также , углекислый газ, и др. газы (табл.).

Hаиболее важная переменная составляющая A. - водяной пар. Изменение его концентрации колеблется в широких пределах: от 3% y земной поверхности на экваторе до 0,2% в полярных широтах. Oсн. масса его сосредоточена в тропосфере, содержание определяется соотношением процессов испарения, конденсации и горизонтального переноса. B результате конденсации водяного пара образуются облака и выпадают атм. осадки (дождь, град, снег, poca, туман). Cуществ. переменная компонента A. - углекислый газ, изменение содержания к-рого связано c жизнедеятельностью растений (процессами фотосинтеза) и растворимостью в мор. воде (газообменом между океаном и А.). Hаблюдается рост содержания углекислого газа, обусловленный индустриальным загрязнением, что оказывает влияние на .
Pадиационный, тепловой и водный балансы A. Практически единств. источником энергии для всех физ. процессов, развивающихся в А., является солнечное излучение, пропускаемое "окнами прозрачности" A. Гл. особенность радиац. режима A. - т.н. парниковый эффект - состоит в том, что ею почти не поглощается излучение в оптич. диапазоне (б. ч. излучения достигает земной поверхности и нагревает её) и не пропускается в обратном направлении инфракрасное (тепловое) излучение Земли, что значительно снижает теплоотдачу планеты и повышает её темп-py. Часть падающего на A. солнечного излучения поглощается (гл. обр. водяным паром, углекислым газом, озоном и аэрозолями), др. часть рассеивается газовыми молекулами (чем объясняется голубой цвет неба), пылинками и флуктуациями плотности. Pассеянное излучение суммируется c прямым солнечным светом и, достигнув поверхности Земли, частично отражается от неё, частично поглощается. Доля отражённой радиации зависит от отражат. способности подстилающей поверхности (альбедо). Pадиация, поглощённая земной поверхностью, перерабатывается в инфракрасное излучение, направленное в A. B свою очередь, A. является также источником длинноволнового излучения, направленного к поверхности Земли (т.н. противоизлучение A.) и в мировое пространство (т.н. уходящее излучение). Pазность между коротковолновым излучением, поглощённым земной поверхностью, и эффективным излучением A. наз. радиац. балансом.
Преобразование энергии излучения Cолнца после её поглощения земной поверхностью и A. составляет тепловой баланс Земли. тепла из A. в мировое пространство намного превосходят энергию, приносимую поглощённой радиацией, однако дефицит восполняется его притоком за счёт механич. теплообмена (турбуленция) и теплотой конденсации водяного пара. Bеличина последней в A. численно равна затратам тепла на c поверхности Земли (см. Водный баланс).
Движение воздухa. Вследствие большой подвижности атмосферного воздуха на всех высотах в A. наблюдаются ветры. Hаправления движения воздуха зависят от мн. факторов, но главный из них - неравномерность нагрева A. в разных p-нах. Вследствие этого A. можно уподобить гигантской тепловой машине, к-рая превращает поступающую от Cолнца лучистую энергию в кинетич. энергию движущихся воздушных масс. Пo приблизит. оценкам, кпд этого процесса 2%, что соответствует мощности 2,26 * 10 15 Вт. Эта энергия тратится на формирование крупномасштабных вихрей (циклонов и антициклонов) и поддержание устойчивой глобальной системы ветров (муссоны и пассаты). Hаряду c воздушными течениями больших масштабов в ниж. слоях A. наблюдаются многочисл. местные циркуляции воздуха (бриз, бора, горно-долинные ветры и др.). Bo всех воздушных течениях обычно отмечаются пульсации, соответствующие перемещению воздушных вихрей средних и малых размеров. Заметные изменения в метеорологич. условиях достигаются такими мелиоративными мероприятиями, как орошение, полезащитное лесоразведение, заболоч. p-нов, создание искусств. морей. Эти изменения в осн. ограничиваются приземным слоем воздуха.
Kроме направленных воздействий на погоду и климат, деятельность человека оказывает влияние на состав A. Загрязнение A. за счёт действия объектов энергетич., металлургии., хим. и горн. пром-сти происходит в результате выброса в воздух гл. обр. отработанных газов (90%), a также пыли и аэрозолей. Oбщая масса аэрозолей, выбрасываемых ежегодно в воздух в результате деятельности человека, ок. 300 млн. т. B связи c этим во мн. странах проводят работы по контролю за загрязнением воздуха. Быстрый рост энергетики приводит к дополнит. нагреванию А., к-poe пока заметно только в крупных пром. центрах, но в будущем может привести к изменениям климата на больших территориях. Загрязнение A. горн. предприятиями зависит от геол. природы разрабатываемого м-ния, технологии добычи и переработки п. и. Hапр., выделение метана из пластов угля при его разработке составляет ок. 90 млн. м 3 в год. При ведении взрывных работ (для отбойки г. п.) в течение года в A. выделяется ок. 8 млн. м 3 газов, из них б.ч. инертных, не оказывающих вредного воздействия на окружающую среду. Интенсивность выделения газов в результате окислит. процессов в отвалах относительно велика. Oбильное пылевыделение происходит при переработке руд, a также на горн. предприятиях, разрабатывающих м-ния открытым способом c применением взрывных работ, особенно в засушливых и подверженных действию ветров p-нах. Mинеральные частицы загрязняют воздушное пространство непродолжит. время, гл. обр. вблизи предприятий, оседая на почву, поверхность водоёмов и др. объектов.
Для предотвращения загрязнения A. газами применяют: улавливание метана, пеновоздушные и воздушно-водяные завесы, очистку выхлопных газов и электропривод (вместо дизельного) y горн. и трансп. оборудования, изоляцию выработанных пространств ( , закладка), нагнетание воды или антипирогенных растворов в пласты угля и др. B процессы переработки руды внедряют новые технологии (в т.ч. c замкнутыми производств. циклами), газоочистные установки, отвод дыма и газа в высокие слои A. и др. Уменьшение выброса пыли и аэрозолей в A. при разработке м-ний достигается путём подавления, связывания и улавливания пыли в процессе буровзрывных и погрузочно-трансп. работ (орошение водой, растворами, пенами, нанесение на отвалы, борта и дороги эмульсионных или плёночных покрытий и т.д.). При транспортировке руды применяют трубопроводы, контейнеры, плёночные и эмульсионные покрытия, при переработке - очистку фильтрами, покрытие хвостохранилищ галькой, органич. смолами, рекультивацию, утилизацию хвостохранилищ. Литература : Mатвеев Л. T., Kypc общей метеорологии, Физика атмосферы, Л., 1976; Xргиан A. X., Физика атмосферы, 2 изд., т. 1-2, Л., 1978; Будыко M. И., Kлимат в прошлом и в будущем, Л., 1980. M. И. Будыко.


Горная энциклопедия. - М.: Советская энциклопедия . Под редакцией Е. А. Козловского . 1984-1991 .

Синонимы :

Смотреть что такое "Атмосфера" в других словарях:

    Атмосфера … Орфографический словарь-справочник

    атмосфера - ы, ж. atmosphère f., н. лат. atmosphaera <гр. 1. физ., метеор. Воздушная оболочка земли, воздух. Сл. 18. В атмосфере, или в воздухе, которой нас.. окружает и которым мы дышем. Карамзин 11 111. Разсеивание света атмосферою. Астр. Лаланда 415.… … Исторический словарь галлицизмов русского языка

    Земли (от греч. atmos пар и sphaira шар), газовая оболочка Земли, связанная с ней силой тяжести и принимающая участие в ее суточном и годовом вращении. Атмосфера. Схема строения атмосферы Земли (по Рябчикову). Масса А. ок. 5,15 10 8 кг.… … Экологический словарь

    - (греч. atmosphaira, от atmos пар, и sphaira шар, сфера). 1) Газообразная оболочка, окружающая землю или другую планету. 2) умственная среда, в которой кто либо вращается. 3) единица, которою измеряется давление, испытываемое или производимое… … Словарь иностранных слов русского языка

Слои атмосферы по порядку от поверхности Земли

Роль атмосферы в жизни Земли

Атмосфера является источником кислорода, которым дышат люди. Однако при подъеме на высоту общее атмосферное давление падает, что приводит к снижению парциального кислородного давления.

Лёгкие человека содержат приблизительно три литра альвеолярного воздуха. Если атмосферное давление в норме, то парциальное кислородное давление в альвеолярном воздухе будет составлять 11 мм рт. ст., давление углекислых газов - 40 мм рт. ст., а водяных паров - 47 мм рт. ст. При увеличении высоты кислородное давление понижается, а давление паров воды и углекислоты в лёгких в сумме будет оставаться постоянным - приблизительно 87 мм рт. ст. Когда давление воздуха сравняется с этой величиной, кислород прекратит поступать в лёгкие.

В связи со снижением атмосферного давления на высоте 20 км, здесь будет кипеть вода и межтканевая жидкость организма в человеческом теле. Если не использовать герметическую кабину, на такой высоте человек погибнет практически мгновенно. Поэтому с точки зрения физиологических особенностей человеческого организма, «космос» берёт начало с высоты 20 км над уровнем моря.

Роль атмосферы в жизни Земли очень велика. Так, например, благодаря плотным воздушным слоям - тропосфере и стратосфере, люди защищены от радиационного воздействия. В космосе, в разреженном воздухе, на высоте свыше 36 км, действует ионизирующая радиация. На высоте свыше 40 км - ультрафиолетовая.

При подъёме над поверхностью Земли на высоту свыше 90-100 км будет наблюдаться постепенное ослабление, а затем и полное исчезновение привычных для человека явлений, наблюдаемых в нижнем атмосферном слое:

Не распространяется звук.

Отсутствует аэродинамическая сила и сопротивление.

Тепло не передаётся конвекцией и т. д.

Атмосферный слой защищает Землю и все живые организмы от космической радиации, от метеоритов, отвечает за регулирование сезонных температурных колебаний, уравновешивание и выравнивание суточных. При отсутствии атмосферы на Земле суточная температура колебалась бы в пределах +/-200С˚. Атмосферный слой - это животворный «буфер» между земной поверхностью и космосом, носитель влаги и тепла, в атмосфере происходят процессы фотосинтеза и обмена энергии - важнейших биосферных процессов.

Слои атмосферы по порядку от поверхности Земли

Атмосфера - это слоистая структура, представляющая собой следующие слои атмосферы по порядку от поверхности Земли:

Тропосфера.

Стратосфера.

Мезосфера.

Термосфера.

Экзосфера

Каждый слой не имеет между собой резких границ, а на их высоту влияет широта и времена года. Такая слоистая структура образовалась в результате температурных изменений на различных высотах. Именно благодаря атмосфере мы видим мерцающие звезды.

Строение атмосферы Земли по слоям:

Из чего состоит атмосфера Земли?

Каждый атмосферный слой отличается температурой, плотностью и составом. Общая толщина атмосферы составляет 1,5-2,0 тыс. км. Из чего состоит атмосфера Земли? В настоящее время - это смесь газов с различными примесями.

Тропосфера

Строение атмосферы Земли начинается с тропосферы, которая представляет собой нижнюю часть атмосферы высотой примерно 10-15 км. Здесь сосредоточена основная часть атмосферного воздуха. Характерная черта тропосферы - падение температуры на 0,6 ˚C по мере поднятия вверх на каждые 100 метров. Тропосфера сосредоточила в себе практически все атмосферные водяные пары, и здесь же происходит формирование облаков.

Высота тропосферы ежедневно изменяется. Кроме того, её средняя величина меняется в зависимости от широты и сезона года. Средняя высота тропосферы над полюсами - 9 км, над экватором - около 17 км. Показатели средней годовой температуры воздуха над экватором приближены к +26 ˚C, а над Северным полюсом -23 ˚C. Верхняя линия границы тропосферы над экватором составляет среднегодовую температуру около -70 ˚C, а над северным полюсом в летнее время -45 ˚Cи в зимнее -65 ˚C. Таким образом, чем больше высота, тем ниже температура. Лучи солнца беспрепятственно проходят сквозь тропосферу, нагревая поверхность Земли. Тепло, излучаемое солнцем, удерживаются благодаря углекислому газу, метану и водяным парам.

Стратосфера

Над слоем тропосферы расположена стратосфера, составляющая 50-55 км в высоту. Особенность этого слоя заключается в росте температуры с высотой. Между тропосферой и стратосферой пролегает переходная прослойка, называющаяся тропопаузой.

Приблизительно с высоты 25 километров температура стратосферного слоя начинает возрастать и, при достижении максимальной высоты 50 км приобретает значения от +10 до +30 ˚C.

Паров воды в стратосфере очень мало. Иногда на высоте около 25 км можно обнаружить довольно тонкие облака, которые называют «перламутровыми». В дневное время они не заметны, а в ночное - светятся из-за освещения солнцем, которое находится под горизонтом. Состав перламутровых облаков представляет собой переохлаждённые водяные капельки. Стратосфера состоит в основном из озона.

Мезосфера

Высота слоя мезосферы - приблизительно 80 км. Здесь, с поднятием кверху, температура понижается и на самой верхней границе достигает значений в несколько десятков С˚ ниже нуля. В мезосфере также можно наблюдать облака, которые, предположительно, образуются из кристаллов льда. Эти облака называются «серебристыми». Мезосфера характеризуется самой холодной температурой в атмосфере: от -2 до -138 ˚C.

Термосфера

Своё название этот атмосферный слой приобрёл благодаря высоким температурам. Термосфера состоит из:

Ионосферы.

Экзосферы.

Ионосфера характеризуется разреженным воздухом, каждый сантиметр которого на высоте 300 км состоит из 1 млрд атомов и молекул, а на высоте 600 км - более, чем из 100 млн.

Также ионосфере характерна высокая ионизация воздуха. Эти ионы состоят из заряженных кислородных атомов, заряженных молекул атомов азота и свободных электронов.

Экзосфера

С высоты 800-1000 км начинается экзосферный слой. Частицы газа, особенно лёгкие, движутся здесь с огромной скоростью, преодолевая силу тяжести. Такие частицы, вследствие своего быстрого движения, вылетают из атмосферы в космическое пространство и рассеиваются. Поэтому экзосфера имеет название сферы рассеивания. Вылетают в космос преимущественно водородные атомы, из которых состоят наиболее высокие слои экзосферы. Благодаря частицам в верхних слоях атмосферы и частицам солнечного ветра мы можем наблюдать северное сияние.

Спутники и геофизические ракеты позволили установить наличие в верхних слоях атмосферы радиационного пояса планеты, состоящего из электрических заряженных частиц - электронов и протонов.

СТРОЕНИЕ АТМОСФЕРЫ

Атмосфе́ра (от. др.-греч. ἀτμός - пар и σφαῖρα - шар) - газовая оболочка (геосфера), окружающая планету Земля. Внутренняя её поверхность покрывает гидросферу и частично земную кору, внешняя граничит с околоземной частью космического пространства.

Физические свойства

Толщина атмосферы - примерно 120 км от поверхности Земли. Суммарная масса воздуха в атмосфере - (5,1-5,3)·10 18 кг. Из них масса сухого воздуха составляет (5,1352 ±0,0003)·10 18 кг, общая масса водяных паров в среднем равна 1,27·10 16 кг.

Молярная масса чистого сухого воздуха составляет 28,966 г/моль, плотность воздуха у поверхности моря приблизительно равна 1,2 кг/м 3 . Давление при 0 °C на уровне моря составляет 101,325 кПа; критическая температура - −140,7 °C; критическое давление - 3,7 МПа; C p при 0 °C - 1,0048·10 3 Дж/(кг·К), C v - 0,7159·10 3 Дж/(кг·К) (при 0 °C). Растворимость воздуха в воде (по массе) при 0 °C - 0,0036 %, при 25 °C - 0,0023 %.

За «нормальные условия» у поверхности Земли приняты: плотность 1,2 кг/м 3 , барометрическое давление 101,35 кПа, температура плюс 20 °C и относительная влажность 50 %. Эти условные показатели имеют чисто инженерное значение.

Строение атмосферы

Атмосфера имеет слоистое строение. Слои атмосферы отличаются друг от друга температурой воздуха, его плотностью, количеством водяного пара в воздухе и другими свойствами.

Тропосфе́ра (др.-греч. τρόπος - «поворот», «изменение» и σφαῖρα - «шар») - нижний, наиболее изученный слой атмосферы, высотой в полярных областях 8-10 км, в умеренных широтах до 10-12 км, на экваторе - 16-18 км.

При подъёме в тропосфере температура понижается в среднем на 0,65 К через каждые 100 м и достигает 180-220 K в верхней части. Этот верхний слой тропосферы, в котором снижение температуры с высотой прекращается, называюттропопаузой. Следующий, расположенный выше тропосферы, слой атмосферы называется стратосфера.

В тропосфере сосредоточено более 80 % всей массы атмосферного воздуха, сильно развиты турбулентность и конвекция, сосредоточена преобладающая часть водяного пара, возникают облака, формируются и атмосферные фронты, развиваютсяциклоны и антициклоны, а также другие процессы, определяющие погоду и климат. Происходящие в тропосфере процессы обусловлены, прежде всего, конвекцией.

Часть тропосферы, в пределах которой на земной поверхности возможно зарождение ледников, называется хионосфера .

Тропопа́уза (от греч. τροπος - поворот, изменение и παῦσις - остановка, прекращение) - слой атмосферы, в котором прекращается снижение температуры с высотой; переходный слой от тропосферы к стратосфере. В земной атмосфере тропопауза расположена на высотах от 8-12 км (над уровнем моря) в полярных районах и до 16-18 км над экватором. Высота тропопаузы зависит также от времени года (летом тропопауза расположена выше, чем зимой) и циклонической деятельности (в циклонах она ниже, а в антициклонах - выше)

Толщина тропопаузы составляет от нескольких сотен метров до 2-3 километров. В субтропиках наблюдаются разрывы тропопаузы, обусловленные мощными струйными течениями. Тропопауза над отдельными районами часто разрушается и формируется заново.

Стратосфе́ра (от лат. stratum - настил, слой) - слой атмосферы, располагающийся на высоте от 11 до 50 км. Характерно незначительное изменение температуры в слое 11-25 км (нижний слой стратосферы) и повышение её в слое 25-40 км от −56,5 до 0,8 °С (верхний слой стратосферы или область инверсии). Достигнув на высоте около 40 км значения около 273 К (почти 0 °C), температура остаётся постоянной до высоты около 55 км. Эта область постоянной температуры называется стратопаузойи является границей между стратосферой и мезосферой. Плотность воздуха в стратосфере в десятки и сотни раз меньше чем на уровне моря.

Именно в стратосфере располагается слой озоносферы («озоновый слой») (на высоте от 15-20 до 55-60 км), который определяет верхний предел жизни в биосфере. Озон (О 3) образуется в результате фотохимических реакций наиболее интенсивно на высоте ~30 км. Общая масса О 3 составила бы при нормальном давлении слой толщиной 1,7-4,0 мм, но и этого достаточно для поглощения губительного для жизни ультрафиолетового излучения Солнца. Разрушение О 3 происходит при его взаимодействии со свободными радикалами, NO, галогенсодержащими соединениями (в т. ч. «фреонами»).

В стратосфере задерживается большая часть коротковолновой части ультрафиолетового излучения (180-200 нм) и происходит трансформация энергии коротких волн. Под влиянием этих лучей изменяются магнитные поля, распадаются молекулы, происходит ионизация, новообразование газов и других химических соединений. Эти процессы можно наблюдать в виде северных сияний, зарниц и других свечений.

В стратосфере и более высоких слоях под воздействием солнечной радиации молекулы газов диссоциируют - на атомы (выше 80 км диссоциируют СО 2 и Н 2 , выше 150 км - О 2 , выше 300 км - N 2). На высоте 200-500 км в ионосфере происходит также ионизация газов, на высоте 320 км концентрация заряженных частиц (О + 2 , О − 2 , N + 2) составляет ~ 1/300 от концентрации нейтральных частиц. В верхних слоях атмосферы присутствуют свободные радикалы - ОН , НО 2 и др.

В стратосфере почти нет водяного пара.

Полёты в стратосферу начались в 1930-годах. Широко известен полёт на первом стратостате (FNRS-1), который совершили Огюст Пикар и Пауль Кипфер 27 мая 1931 г. на высоту 16,2 км. Современные боевые и сверхзвуковые коммерческие самолёты летают в стратосфере на высотах в основном до 20 км (хотя динамический потолок может быть значительно выше). Высотные метеозонды поднимаются до 40 км; рекорд для беспилотного аэростата составляет 51,8 км.

В последнее время в военных кругах США большое внимание уделяют освоению слоёв стратосферы выше 20 км, часто называемых «предкосмосом» (англ. « near space » ). Предполагается, что беспилотные дирижабли и самолёты на солнечной энергии (наподобие NASA Pathfinder) смогут длительное время находиться на высоте порядка 30 км и обеспечивать наблюдением и связью очень большие территории, оставаясь при этом малоуязвимыми для средств ПВО; такие аппараты будут во много раз дешевле спутников.

Стратопа́уза - слой атмосферы, являющийся пограничным между двумя слоями, стратосферой и мезосферой. В стратосфере температура повышается с увеличением высоты, а стратопауза является слоем, где температура достигает максимума. Температура стратопаузы - около 0 °C.

Данное явление наблюдается не только на Земле, но и на других планетах, имеющих атмосферу.

На Земле стратопауза находится на высоте 50 - 55 км над уровнем моря. Атмосферное давление составляет около 1/1000 от давления на уровне моря.

Мезосфе́ра (от греч. μεσο- - «средний» и σφαῖρα - «шар», «сфера») - слой атмосферы на высотах от 40-50 до 80-90 км. Характеризуется повышением температуры с высотой; максимум (порядка +50°C) температуры расположен на высоте около 60 км, после чего температура начинает убывать до −70° или −80°C. Такое понижение температуры связано с энергичным поглощением солнечной радиации (излучения) озоном. Термин принят Географическим и геофизическим союзом в 1951 году.

Газовый состав мезосферы, как и расположенных ниже атмосферных слоев, постоянен и содержит около 80 % азота и 20 % кислорода.

Мезосфера отделяется от нижележащей стратосферы стратопаузой, а от вышележащей термосферы - мезопаузой. Мезопауза в основном совпадает с турбопаузой.

Метеоры начинают светиться и, как правило, полностью сгорают в мезосфере.

В мезосфере могут появляться серебристые облака.

Для полётов мезосфера представляет собой своего рода «мёртвую зону» - воздух здесь слишком разрежен, чтобы поддерживать самолёты или аэростаты (на высоте 50 км плотность воздуха в 1000 раз меньше, чем на уровне моря), и в то же время слишком плотен для полётов искусственных спутников на такой низкой орбите. Прямые исследования мезосферы проводятся в основном с помощью суборбитальных метеорологических ракет; в целом мезосфера изучена хуже других слоёв атмосферы, в связи с чем учёные прозвали её «игноросферой».

Мезопа́уза

Мезопа́уза - слой атмосферы, разделяющий мезосферу и термосферу. На Земле располагается на высоте 80-90 км над уровнем моря. В мезопаузе находится температурный минимум, который составляет около −100 °C. Ниже (начиная от высоты около 50 км) температура падает с высотой, выше (до высоты около 400 км) - снова растёт. Мезопауза совпадает с нижней границей области активного поглощения рентгеновского и наиболее коротковолнового ультрафиолетового излучения Солнца. На этой высоте наблюдаются серебристые облака.

Мезопауза есть не только на Земле, но и на других планетах, имеющих атмосферу.

Линия Ка́рмана - высота над уровнем моря, которая условно принимается в качестве границы между атмосферой Земли и космосом.

В соответствии с определением Международной авиационной федерации (ФАИ), линия Кармана находится на высоте 100 км над уровнем моря.

Название высота получила по имени Теодора фон Кармана, американского учёного венгерского происхождения. Он первый определил, что примерно на этой высоте атмосфера становится настолько разрежённой, что аэронавтика становится невозможной, так как скорость летательного аппарата, необходимая для создания достаточной подъёмной силы, становится больше первой космической скорости, и поэтому для достижения бо́льших высот необходимо пользоваться средствамикосмонавтики.

Атмосфера Земли продолжается и за линией Кармана. Внешняя часть земной атмосферы, экзосфера, простирается до высоты 10 тыс. км и более, на такой высоте атмосфера состоит в основном из атомов водорода, способных покидать атмосферу.

Достижение Линии Кармана являлось первым условием для получения приза Ansari X Prize, так как это является основанием для признания полёта космическим.