Как называются люди в индии. Индусы или индийцы: как правильно называть? Как появилось название «хинди»

Дифракция и дисперсия - такие красивые и похожие слова, которые звучат как музыка для ушей физика! Как все уже догадались, сегодня мы говорим уже не о геометрической оптике, а о явлениях, обусловленных именно волновой природой света .

Дисперсия света

Итак, в чем заключается явление дисперсии света? В мы рассмотрели закон преломления света. Тогда мы не задумывались, а точнее - не вспоминали о том, что свет (электромагнитная волна) имеет определенную длину. Давайте вспомним:

Свет – электромагнитная волна. Видимый свет – это волны, имеющие длину в интервале от 380 до 770 нанометров.

Так вот, еще старина Ньютон заметил, что показатель преломления зависит от длины волны. Другими словами, красный свет, падая на поверхность и преломляясь, отклонится на другой угол, нежели желтый, зеленый и так далее. Эта зависимость и называется дисперсией .

Пропуская белый свет через призму, можно получить спектр, состоящий из всех цветов радуги. Это явление напрямую объясняется дисперсией света. Раз показатель преломления зависит от длины волны, значит, он зависит и от частоты. Соответственно, скорость света для разных длин волн в веществе также будет различна

Дисперсия света – зависимость скорости света в веществе от частоты.

Где применяется дисперсия света? Да повсюду! Это не только красивое слово, но и красивое явление. Дисперсия света в быту, природе, технике и искусстве. Вот, например, дисперсия красуется на обложке альбома группы Pink Floyd.

Дифракция света

Перед дифракцией нужно сказать про ее "подругу" - интерференцию . Ведь интерференция и дифракция света - это явления, которые наблюдаются одновременно.

Интерференция света – это когда две когерентные световые волны при наложении усиливают друг друга или наоборот ослабляют.

Волны является когерентными , если разность их фаз постоянна во времени, а при сложении получается волна той же частоты. Будет результирующая волна усилена (интерференционный максимум) или наоборот ослаблена (интерференционный минимум) - зависит от разности фаз колебаний. Максимумы и минимумы при интерференции чередуются, образуя интерференционную картину.

Дифракция света – еще одно проявления волновых свойств. Казалось бы, луч света всегда должен распространяться по прямой. Но нет! Встречая препятствие, свет отклоняется от первоначального направления как бы огибая преграду. Какие условия необходимы для наблюдения дифракции света? Собственно, это явление наблюдается на предметах любых размеров, но на больших предметах его наблюдать трудно и почти невозможно. Лучше всего это удается сделать на препятствиях, сопоставимых по размерам с длиной волны. В случае со светом - это очень маленькие препятствия.

Дифракцией света называется явление отклонения света от прямолинейного направления при прохождении вблизи преграды.

Дифракция проявляется не только для света, но и для других волн. Например, для звуковых. Или для волн на море. Отличный пример дифракции – это то, как мы слышим песню группы Пинк Флойд из проезжающей мимо машины, когда сами стоим за углом. Если бы звуковая волна распространялась прямо, она бы просто не достигла наших ушей, и мы бы стояли в полной тишине. Согласитесь, скучно. Зато с дифракцией гораздо веселее.

Для наблюдения явления дифракции используется специальный прибор – дифракционная решетка . Дифракционная решетка представляет собой систему препятствий, которые по размеру сопоставимы с длиной волны. Это специальные параллельные штрихи, выгравированные на поверхности металлической или стеклянной пластины. Расстояние между краями соседних щелей решетки называется периодом решетки или ее постоянной.

Что происходит со светом при прохождении дифракционной решетки? Попадая на решетку и встречая препятствие, световая волна проходит через систему прозрачных и непрозрачных областей, в результате чего разбивается на отдельные пучки когерентного света, которые после дифракции интерферируют друг с другом. Каждая длина волны отклоняется при этом на определенный угол, и происходит разложение света в спектр. В результате мы наблюдаем дифракцию света на решетке

Формула дифракционной решетки:

Здесь d – период решетки, фи – угол отклонения света после прохождения решетки, k – порядок дифракционного максимума, лямбда – длина волны.

Сегодня мы узнали, в чем чем заключается явления дифракции и дисперсии света. В курсе оптики очень сильно распространены задачи по теме интерференция, дисперсия и дифракция света. Авторы учебников очень любят подобные задачи. Чего нельзя сказать о тех, кому приходится их решать. Если Вы хотите легко справиться с заданиями, разобраться в теме, а заодно и сэкономить время, обратитесь к . Они помогут Вам справиться с любой задачей!

Дифракцией света называют явление отклонения света от прямолинейного распространения в среде с резкими неоднородностями, т.е. световые волны огибают препятствия, но при условии, что размеры последних сравнимы с длиной световой волны. Для красного света длина волны составляет λкр≈8∙10 -7 м, а для фиолетового - λ ф ≈4∙10 -7 м. Явление дифракции наблюдается на расстояниях l от препятствия , где D – линейный размер препятствия, λ - длина волны. Итак, для наблюдения явления дифракции необходимо выполнять определенные требования к размерам препятствий, расстояниям от препятствия до источника света, а также к мощности источника света. На рис. 1 приведены фотографии дифракционных картин от различных препятствий: а) тонкой проволочки, б) круглого отверстия, в) круглого экрана.


Рис. 1

Для решения дифракционных задач – отыскания распределения на экране интенсивностей световой волны, распространяющейся в среде с препятствиями, - применяются приближенные методы, основанные на принципах Гюйгенса и Гюйгенса-Френеля.

Принцип Гюйгенса: каждая точка S 1 , S 2 ,…,S n фронта волны AB (рис. 2) является источником новых, вторичных волн. Новое положение фронта волны A 1 B 1 через время
представляет собой огибающую поверхность вторичных волн.

Принцип Гюйгенса-Френеля: все вторичные источники S 1 , S 2 ,…,S n , расположенные на поверхности волны, когерентны между собой, т.е. имеют одинаковую длину волны и постоянную разность фаз. Амплитуда и фаза волны в любой точке М пространства является результатом интерференции волн, излучаемых вторичными источниками (рис. 3).


Рис. 2

Рис. 3

Прямолинейное распространение луча SM (рис. 3), испущенного источником S в однородной среде, объясняется принципом Гюйгенса-Френеля. Все вторичные волны, излучаемые вторичными источниками, находящимися на поверхности фронта волны АВ, гасятся в результате интерференции, кроме волн от источников, расположенных на малом участке сегмента ab , перпендикулярно к SM. Свет распространяется вдоль узкого конуса с очень малым основанием, т.е. практически прямолинейно.

Дифракционная решетка.

На явлении дифракции основано устройство замечательного оптического прибора – дифракционной решетки. Дифракционной решеткой в оптике называется совокупность большого числа препятствий и отверстий, сосредоточенных в ограниченном пространстве, на которых происходит дифракция света.

Простейшей дифракционной решеткой является система из N одинаковых параллельных щелей в плоском непрозрачном экране. Хорошая решетка изготавливается с помощью специальной делительной машины, наносящей на специальной пластинке параллельные штрихи. Число штрихов доходит до нескольких тысяч на 1мм; общее число штрихов превышает 100000 (рис. 4).

Рис.5

Рис. 4

Если ширина прозрачных промежутков (или отражающих полос) b, а ширина непрозрачных промежутков (или рассеивающих свет полос) a , то величина d=b+a называется постоянной (периодом) дифракционной решетки (рис. 5).

По принципу Гюйгенса-Френеля каждый прозрачный промежуток (или щель) является источником когерентных вторичных волн, способных интерферировать друг с другом. Если на дифракционную решетку перпендикулярно к ней падает пучок параллельных лучей света, то под углом дифракции φ на экране Э (рис. 5), расположенном в фокальной плоскости линзы, будет наблюдаться система дифракционных максимумов и минимумов, полученная в результате интерференции света от различных щелей.

Найдем условие, при котором идущие от щелей волны усиливают друг друга. Рассмотрим для этого волны, распространяющиеся в направлении, определяемом углом φ (рис. 5). Разность хода между волнами от краев соседних щелей равна длине отрезка DK=d∙sinφ . Если на этом отрезке укладывается целое число длин волн, то волны от всех щелей, складываясь, будут усиливать друг друга.

Главные максимумы при дифракции на решетке наблюдаются под углом φ, удовлетворяющими условию d∙sinφ=mλ , где m=0,1,2,3… называется порядком главного максимума. Величина δ=DK=d∙sinφ является оптической разностью хода между сходственными лучами BM и DN , идущими от соседних щелей.

Главные минимумы на дифракционной решетке наблюдаются под такими углами φ дифракции, для которых свет от разных частей каждой щели полностью гасится в результате интерференции. Условие главных максимумов совпадает с условием ослабления на одной щели d∙sinφ=nλ (n=1,2,3…).

Дифракционная решетка является одним из простейших достаточно точных устройств для измерения длин волн. Если период решетки известен, то определение длины волны сводится к измерению угла φ, соответствующего направлению на максимум.

Чтобы наблюдать явления, обусловленные волновой природой света, в частности, дифракцию необходимо использовать излучение, обладающее высокой когерентностью и монохроматичностью, т.е. лазерное излучение. Лазер является источником плоской электромагнитной волны.

Дифракцией света в физике называют явление отклонения от законов геометрической оптики при распространении световых волн.

Термин «дифракция » происходит от латинского diffractus , что дословно означает «огибание препятствия волнами». Изначально явление дифракции именно так и рассматривалось. На самом деле это гораздо более широкое понятие. Хотя наличие препятствия на пути волны всегда является причиной дифракции, в одних случаях волны могут огибать его и проникать в область геометрической тени, в других они только отклоняются в определённом направлении. Разложение волн по частотному спектру также является проявлением дифракции.

Как проявляется дифракция света

В прозрачной однородной среде свет распространяется прямолинейно. Поставим на пути пучка света непрозрачный экран с небольшим отверстием в виде круга. На экране наблюдения, расположенном за ним на достаточно большом расстоянии, мы увидим дифракционную картинку : чередующиеся светлые и тёмные кольца. Если же отверстие в экране имеет форму щели, дифракционная картинка будет другой: вместо окружностей мы увидим параллельные чередующиеся светлые и тёмные полоски. Что же является причиной их появления?

Принцип Гюйгенса-Френеля

Объяснить явление дифракции пытались ещё во времена Ньютона. Но сделать это на основе существовавшей в то время корпускулярной теории света не удавалось.

Христиан Гюйгенс

В 1678 г. нидерландский ученый Христиан Гюйгенс вывел принцип, названный его именем, согласно которому каждая точка фронта волны (поверхности, достигнутой волной) является источником новой вторичной волны . А огибающая поверхностей вторичных волн показывает новое положение волнового фронта. Этот принцип позволял определять направление движения световой волны, строить волновые поверхности в разных случаях. Но дать объяснение явлению дифракции он не мог.

Огюстен Жан Френель

Много лет спустя, в 1815 г. французский физик Огюсте́н Жан Френе́ль развил принцип Гюйгенса, введя понятия когерентности и интерференции волн. Дополнив ими принцип Гюйгенса, он объяснил причину дифракции интерференцией вторичных световых волн.

Что же такое интерференция?

Интерференцией называют явление наложения когерентных (имеющих одинаковую частоту колебаний) волн друг на друга. В результате этого процесса волны либо усиливают друг друга, либо ослабляют. Интерференцию света в оптике мы наблюдаем, как чередующиеся светлые и тёмные полосы. Яркий пример интерференции световых волн - кольца Ньютона .

Источники вторичных волн являются частью одного и того же волнового фронта. Следовательно, они когерентны. Это означает,что между излучёнными вторичными волнами будет наблюдаться интерференция. В тех точках пространства, где световые волны усиливаются, мы видим свет (максимум освещенности), а там, где они гасят друг друга, наблюдается темнота (минимум освещённости).

В физике рассматривают два вида дифракции света: дифракцию Френéля (дифракция на отверстии) и дифракцию Фраунгофера (дифракция на щели).

Дифракция Френеля

Такую дифракцию можно наблюдать, если на пути световой волны расположить непрозрачный экран, в котором проделано узкое круглое отверстие (апертура).

Если бы свет распространялся прямолинейно, на экране наблюдения мы увидели бы светлое пятно. На самом деле, проходя через отверстие, свет расходится. На экране можно увидеть концентрические (имеющие общий центр) чередующиеся светлые и тёмные кольца. Как же они образуются?

Согласно принципу Гюйгенса - Френеля фронт световой волны, достигая плоскости отверстия в экране, становится источником вторичных волн. Так как эти волны когерентны, то они будут интерферировать. В результате в точке наблюдения мы будем наблюдать чередующиеся светлые и тёмные окружности (максимумы и минимумы освещённости).

Суть его в следующем.

Представим, что световая сферическая волна распространяется из источника S 0 в точку наблюдения М . Через точку S проходит сферическая волновая поверхность. Разобьём её на кольцевые зоны таким образом, чтобы расстояние от краёв зоны до точки М отличалось на ½ длины световой волны. Полученные кольцевые зоны называются зонами Френеля. А сам метод разбиения называют методом зон Френеля .

Расстояние от точки М до волновой поверхности первой зоны Френеля равно l + ƛ/2 , до второй зоны l + 2ƛ/2 и т.д.

Каждая зона Френеля рассматривается как источник вторичных волн определённой фазы. Две соседние зоны Френеля находятся в противофазе. Это означает, что вторичные волны, возникающие в соседних зонах, будут ослаблять друг друга в точке наблюдения. Волна из второй зоны будет гасить волну из первой зоны, а волна из третьей зоны будет её усиливать. Четвёртая волна снова ослабит первую и т.д. В результате суммарная амплитуда в точке наблюдения будет равна А = А 1 - А 2 + А 3 - А 4 + …

Если на пути света поставить такое препятствие, которое откроет только первую зону Френеля, то результирующая амплитуда станет равной А 1 . Это означает, что интенсивность излучения в точке наблюдения будет гораздо выше, чем в случае, когда открыты все зоны. А если закрыть все чётные зоны, то интенсивность возрастёт во много раз, так как не будет зон, ослабляющих его.

Чётные или нечётные зоны можно перекрыть с помощью специального устройства, представляющего собой стеклянную пластинку, на которой выгравированы концентрические окружности. Это устройство называют пластинкой Френеля.

К примеру, если внутренние радиусы тёмных колец пластинки совпадает с радиусами нечётных зон Френеля, а внешние - с радиусами чётных, то в этом случае будут «выключены» чётные зоны, что вызовет усиление освещения в точке наблюдения.

Дифракция Фраунгофера

Совсем другая дифракционная картинка возникнет, если расположить на пути плоской монохроматической световой волны перпендикулярно её направлению препятствие в виде экрана с узкой щелью. Вместо светлых и тёмных концентрических окружностей на экране наблюдения мы увидим чередующиеся светлые и тёмные полосы. В центре будет расположена самая яркая полоса. По мере удаления от центра яркость полос будет уменьшаться. Такая дифракция называется дифракцией Фраунгофера. Она возникает, когда на экран падает параллельный пучок света. Чтобы его получить, источник света располагают в фокальной плоскости линзы. Экран наблюдения находится в фокальной плоскости другой линзы, расположенной за щелью.

Если бы свет распространялся прямолинейно, то на экране мы наблюдали бы узкую светлую полоску, проходящую через точку О (фокус линзы). Но почему мы видим другую картину?

Согласно принципу Гюйгенса - Френеля в каждой точке волнового фронта, который достигает щели, образуются вторичные волны. Лучи, идущие от вторичных источников, меняют свое направление и отклоняются от первоначального направления на угол φ . Они собираются в точке P фокальной плоскости линзы.

Разобьём щель на зоны Френеля таким образом, чтобы оптическая разность хода между лучами, исходящими от соседних зон была равна половине длины волны ƛ/2 . Если в щель уложится нечётное число таких зон, то в точке Р мы будем наблюдать максимум освещённости. А если чётное, то минимум.

b · sin φ= + 2 m ·ƛ/2 - условие минимума интенсивности;

b · sin φ= + 2( m +1)·ƛ/2 - условие максимума интенсивности,

где m - число зон, ƛ - длина волны, b - ширина щели.

Угол отклонения зависит от ширины щели:

sin φ= m ·ƛ/ b

Чем шире щель, тем больше сдвинуты к центру положения минимумов, и тем ярче будет максимум в центре. И чем эта щель ỳже, тем более широкой и расплывчатой получится дифракционная картинка.

Дифракционная решётка

Явление дифракции света используют в оптическом приборе, который называется дифракционной решёткой . Мы получим такой прибор, если расположим на какой-либо поверхности через равные промежутки параллельные щели или выступы одинаковой ширины или нанесём на поверхность штрихи. Расстояние между серединами щелей или выступов называется периодом дифракционной решётки и обозначается буквой d . Если на 1 мм решётки приходится N штрихов или щелей, то d = 1/ N мм.

Свет, достигая поверхности решётки, разбивается штрихами или щелями на отдельные когерентные пучки. Каждый из этих пучков подвергается дифракции. В результате интерференции они усиливаются или ослабляются. И на экране мы наблюдаем радужные полосы. Так как угол отклонения зависит от длины волны, а у каждого цвета она своя, то белый свет, проходя через дифракционную решётку, раскладывается в спектр. Причём свет с бóльшей длиной волны отклоняется на бóльший угол. То есть красный свет отклоняется в дифракционной решётке сильнее всего в отличие от призмы, где всё происходит наоборот.

Очень важная характеристика дифракционной решётки - угловая дисперсия:

где φ - разность между максимумами интерференции двух волн,

∆ƛ - величина, на которую отличаются длины двух волн.

k - порядковый номер дифракционного максимума, отсчитанный от центра дифракционной картинки.

Дифракционные решётки делятся на прозрачные и отражательные. В первом случае вырезаются щели в экране из непрозрачного материала или наносятся штрихи на прозрачную поверхность. Во втором - штрихи наносят на зеркальную поверхность.

Компакт-диск, знакомый каждому из нас, представляет собой пример отражательной дифракционной решётки с периодом 1,6 мкм. Третья часть этого периода (0,5 мкм) - это углубление (звуковая дорожка), где хранится записанная информация. Оно рассеивает свет. Остальные 2/3 (1,1 мкм) свет отражают.

Дифракционные решётки широко применяются в спектральных приборах: спектрографах, спектрометрах, спектроскопах для точных измерений длины волны.

Темы кодификатора ЕГЭ: дифракция света, дифракционная решётка.

Если на пути волны возникает препятствие, то происходит дифракция - отклонение волны от прямолинейного распространения. Это отклонение не сводится к отражению или преломлению, а также искривлению хода лучей вследствие изменения показателя преломления среды.Дифракция состоит в том, что волна огибает край препятствия и заходит в область геометрической тени.

Пусть, например, плоская волна падает на экран с достаточно узкой щелью (рис. 1 ). На выходе из щели возникает расходящаяся волна, и эта расходимость усиливается с уменьшением ширины щели.

Вообще, дифракционные явления выражены тем отчётливей, чем мельче препятствие. Наиболее существенна дифракция в тех случаях, когда размер препятствия меньше или порядка длины волны. Именно такому условию должна удовлетворять ширина щели на рис. 1.

Дифракция, как и интерференция, свойственна всем видам волн - механическим и электромагнитным. Видимый свет есть частный случай электромагнитных волн; неудивительно поэтому, что можно наблюдать
дифракцию света.

Так, на рис. 2 изображена дифракционная картина, полученная в результате прохождения лазерного луча сквозь небольшое отверстие диаметром 0,2мм.

Мы видим, как и полагается, центральное яркое пятно; совсем далеко от пятна расположена тёмная область - геометрическая тень. Но вокруг центрального пятна - вместо чёткой границы света и тени! - идут чередующиеся светлые и тёмные кольца. Чем дальше от центра, тем менее яркими становятся светлые кольца; они постепенно исчезают в области тени.

Напоминает интерференцию, не правда ли? Это она и есть; данные кольца являются интерференционными максимумами и минимумами. Какие же волны тут интерферируют? Скоро мы разберёмся с этим вопросом, а заодно и выясним, почему вообще наблюдается дифракция.

Но прежде нельзя не упомянуть самый первый классический эксперимент по интерференции света - опыт Юнга, в котором существенно использовалось явление дифракции.

Опыт Юнга.

Всякий эксперимент с интерференцией света содержит некоторый способ получения двух когерентных световых волн. В опыте с зеркалами Френеля, как вы помните, когерентными источниками являлись два изображения одного и того же источника, полученные в обоих зеркалах.

Самая простая идея, которая возникла прежде всего, состояла в следующем. Давайте проколем в куске картона два отверстия и подставим под солнечные лучи. Эти отверстия будут когерентными вторичными источниками света, поскольку первичный источник один - Солнце. Следовательно, на экране в области перекрытия пучков, расходящихся от отверстий, мы должны увидеть интерференционную картину.

Такой опыт был поставлен задолго до Юнга итальянским учёным Франческо Гримальди (который открыл дифракцию света). Интерференции, однако, не наблюдалось. Почему же? Вопрос это не очень простой, и причина заключается в том, что Солнце - не точечный, а протяжённый источник света (угловой размер Солнца равен 30 угловым минутам). Солнечный диск состоит из множества точечных источников, каждый из которых даёт на экране свою интерференционную картину. Накладываясь, эти отдельные картины "смазывают" друг друга, и в результате на экране получается равномерная освещённость области перекрытия пучков.

Но если Солнце является чрезмерно "большим", то нужно искусственно создать точечный первичный источник. С этой целью в опыте Юнга использовано маленькое предварительное отверстие (рис. 3 ).


Рис. 3. Схема опыта Юнга

Плоская волна падает на первое отверстие, и за отверстием возникает световой конус, расширяющийся вследствие дифракции. Он достигает следующих двух отверстий, которые становятся источниками двух когерентных световых конусов. Вот теперь - благодаря точечности первичного источника - в области перекрытия конусов будет наблюдаться интерференционная картина!

Томас Юнг осуществил этот эксперимент, измерил ширину интерференционных полос, вывел формулу и с помощью этой формулы впервые вычислил длины волн видимого света. Вот почему этот опыт вошёл в число самых знаменитых в истории физики.

Принцип Гюйгенса–Френеля.

Напомним формулировку принципа Гюйгенса: каждая точка, вовлечённая в волновой процесс, является источником вторичных сферических волн; эти волны распространяются от данной точки, как из центра, во все стороны и накладываются друг на друга.

Но возникает естественный вопрос: а что значит "накладываются"?

Гюйгенс свёл свой принцип к чисто геометрическому способу построения новой волновой поверхности как огибающей семейства сфер, расширяющихся от каждой точки исходной волновой поверхности. Вторичные волны Гюйгенса - это математические сферы, а не реальные волны; их суммарное действие проявляется только на огибающей, т. е. на новом положении волновой поверхности.

В таком виде принцип Гюйгенса не давал ответа на вопрос, почему в процессе распространения волны не возникает волна, идущая в обратном направлении. Не объяснёнными оставались и дифракционные явления.

Модификация принципа Гюйгенса состоялась лишь спустя 137 лет. Огюстен Френель заменил вспомогательные геометрические сферы Гюйгенса на реальные волны и предположил, что эти волны интерферируют друг с другом.

Принцип Гюйгенса–Френеля. Каждая точка волновой поверхности служит источником вторичных сферических волн. Все эти вторичные волны являются когерентными ввиду общности их происхождения от первичного источника (и, стало быть, могут интерферировать друг с другом); волновой процесс в окружающем пространстве есть результат интерференции вторичных волн.

Идея Френеля наполнила принцип Гюйгенса физическим смыслом. Вторичные волны, интерферируя, усиливают друг друга на огибающей своих волновых поверхностей в направлении "вперёд", обеспечивая дальнейшее распространение волны. А в направлении "назад" происходит их интерференция с исходной волной, наблюдается взаимное гашение, и обратная волна не возникает.

В частности, свет распространяется там, где вторичные волны взаимно усиливаются. А в местах ослабления вторичных волн мы будем видеть тёмные участки пространства.

Принцип Гюйгенса–Френеля выражает важную физическую идею: волна, удалившись от своего источника, в дальнейшем "живёт своей жизнью" и уже никак от этого источника не зависит. Захватывая новые участки пространства, волна распространяется всё дальше и дальше вследствие интерференции вторичных волн, возбуждённых в различных точках пространства по мере прохождения волны.

Как принцип Гюйгенса–Френеля объясняет явление дифракции? Почему, например, происходит дифракция на отверстии? Дело в том, что из бесконечной плоской волновой поверхности падающей волны экранное отверстие вырезает лишь маленький светящийся диск, и последующее световое поле получается в результате интерференции волн вторичных источников, расположенных уже не на всей плоскости, а лишь на этом диске. Естественно, новые волновые поверхности теперь не будут плоскими; ход лучей искривляется, и волна начинает распространяться в разных направлениях, не совпадающих с первоначальным. Волна огибает края отверстия и проникает в область геометрической тени.

Вторичные волны, испущенные различными точками вырезанного светлого диска, интерферируют друг с другом. Результат интерференции определяется разностью фаз вторичных волн и зависит от угла отклонения лучей. В результате возникает чередование интерференционных максимумов и минимумов - что мы и видели на рис. 2 .

Френель не только дополнил принцип Гюйгенса важной идеей когерентности и интерференции вторичных волн, но и придумал свой знаменитый метод решения дифракционных задач, основанный на построении так называемых зон Френеля . Изучение зон Френеля не входит в школьную программу - о них вы узнаете уже в вузовском курсе физики. Здесь мы упомянем лишь, что Френелю в рамках своей теории удалось дать объяснение нашего самого первого закона геометрической оптики - закона прямолинейного распространения света.

Дифракционная решётка.

Дифракционная решётка - это оптический прибор, позволяющий получать разложение света на спектральные составляющие и измерять длины волн. Дифракционные решётки бывают прозрачными и отражательными.

Мы рассмотрим прозрачную дифракционную решётку. Она состоит из большого числа щелей ширины , разделённых промежутками ширины (рис. 4 ). Свет проходит только сквозь щели; промежутки свет не пропускают. Величина называется периодом решётки.


Рис. 4. Дифракционная решётка

Дифракционная решётка изготавливается с помощью так называемой делительной машины, которая наносит штрихи на поверхность стекла или прозрачной плёнки. При этом штрихи оказываются непрозрачными промежутками, а нетронутые места служат щелями. Если, например, дифракционная решётка содержит 100 штрихов на миллиметр, то период такой решётки будет равен: d= 0,01 мм= 10 мкм.

Сперва мы посмотрим, как проходит сквозь решётку монохроматический свет, т. е. свет со строго определённой длиной волны. Отличным примером монохроматического света служит луч лазерной указки длина волны около 0,65 мкм).

На рис. 5 мы видим такой луч, падающий на одну из дифракционных решёток стандартного набора. Щели решётки расположены вертикально, и на экране за решёткой наблюдаются периодически расположенные вертикальные полосы.

Как вы уже поняли, это интерференционная картина. Дифракционная решётка расщепляет падающую волну на множество когерентных пучков, которые распространяются по всем направлениям и интерферируют друг с другом. Поэтому на экране мы видим чередование максимумов и минимумов интерференции - светлых и тёмных полос.

Теория дифракционной решётки весьма сложна и во всей своей полноте оказывается далеко за рамками школьной программы. Вам следует знать лишь самые элементарные вещи, связанные с одной-единственной формулой; эта формула описывает положения максимумов освещённости экрана за дифракционной решёткой.

Итак, пусть на дифракционную решётку с периодом падает плоская монохроматическая волна (рис. 6 ). Длина волны равна .


Рис. 6. Дифракция на решётке

Для большей чёткости интерференционной картины можно поставить линзу между решёткой и экраном, а экран поместить в фокальной плоскости линзы. Тогда вторичные волны, идущие параллельно от различных щелей, соберутся в одной точке экрана (побочном фокусе линзы). Если же экран расположен достаточно далеко, то особой необходимости в линзе нет - лучи, приходящие в данную точку экрана от различных щелей, будут и так почти параллельны друг другу.

Рассмотрим вторичные волны, отклоняющиеся на угол .Разность хода между двумя волнами, идущими от соседних щелей, равна маленькому катету прямоугольного треугольника с гипотенузой ; или, что то же самое, эта разность хода равна катету треугольника . Но угол равен углу , поскольку это острые углы со взаимно перпендикулярными сторонами. Следовательно, наша разность хода равна .

Интерференционные максимумы наблюдаются в тех случаях, когда разность хода равна целому числу длин волн:

(1)

При выполнении этого условия все волны, приходящие в точку от различных щелей, будут складываться в фазе и усиливать друг друга. Линза при этом не вносит дополнительной разности хода - несмотря на то, что разные лучи проходят через линзу разными путями. Почему так получается? Мы не будем вдаваться в этот вопрос, поскольку его обсуждение выходит за рамки ЕГЭ по физике.

Формула (1) позволяет найти углы, задающие направления на максимумы:

. (2)

При получаем Это центральный максимум , или максимум нулевого порядка .Разность хода всех вторичных волн, идущих без отклонения, равна нулю, и в центральном максимуме они складываются с нулевым сдвигом фаз. Центральный максимум - это центр дифракционной картины, самый яркий из максимумов. Дифракционная картина на экране симметрична относительно центрального максимума.

При получаем угол:

Этот угол задаёт направления на максимумы первого порядка . Их два, и расположены они симметрично относительно центрального максимума. Яркость в максимумах первого порядка несколько меньше, чем в центральном максимуме.

Аналогично, при имеем угол:

Он задаёт направления на максимумы второго порядка . Их тоже два, и они также расположены симметрично относительно центрального максимума. Яркость в максимумах второго порядка несколько меньше, чем в максимумах первого порядка.

Примерная картина направлений на максимумы первых двух порядков показана на рис. 7 .


Рис. 7. Максимумы первых двух порядков

Вообще, два симметричных максимума k -го порядка определяются углом:

. (3)

При небольших соответствующие углы обычно невелики. Например, при мкм и мкм максимумы первого порядка расположены под углом .Яркость максимумов k -го порядка постепенно убывает с ростом k . Сколько всего максимумов можно увидеть? На этот вопрос легко ответить с помощью формулы (2) . Ведь синус не может быть больше единицы, поэтому:

Используя те же числовые данные, что и выше, получим: . Следовательно, наибольший возможный порядок максимума для данной решётки равен 15.

Посмотрите ещё раз на рис. 5 . На экране мы видны 11 максимумов. Это центральный максимум, а также по два максимума первого, второго, третьего, четвёртого и пятого порядков.

С помощью дифракционной решётки можно измерить неизвестную длину волны. Направляем пучок света на решётку (период которой мы знаем), измеряем угол на максимум первого
порядка, пользуемся формулой (1) и получаем:

Дифракционная решётка как спектральный прибор.

Выше мы рассматривали дифракцию монохроматического света, каковым является лазерный луч. Часто приходится иметь дело с немонохроматическим излучением. Оно является смесью различных монохроматических волн, которые составляют спектр данного излучения. Например, белый свет - это смесь волн всего видимого диапазона, от красного до фиолетового.

Оптический прибор называется спектральным , если он позволяет раскладывать свет на монохроматические компоненты и тем самым исследовать спектральный состав излучения. Простейший спектральный прибор вам хорошо известен - это стеклянная призма. К числу спектральных приборов относится также и дифракционная решётка.

Предположим, что на дифракционную решётку падает белый свет. Давайте вернёмся к формуле (2) и подумаем, какие выводы из неё можно сделать.

Положение центрального максимума () не зависит от длины волны. В центре дифракционной картины сойдутся с нулевой разностью хода все монохроматические составляющие белого света. Поэтому в центральном максимуме мы увидим яркую белую полосу.

А вот положения максимумов порядка определяются длиной волны. Чем меньше , тем меньше угол для данного . Поэтому в максимуме k -го порядка монохроматические волны разделяются в пространстве: самой близкой к к центральному максимуму окажется фиолетовая полоса, самой далёкой - красная.

Следовательно, в каждом порядке белый свет раскладывается решёткой в спектр.
Максимумы первого порядка всех монохроматических компонент образуют спектр первого порядка; затем идут спектры второго, третьего и так далее порядков. Спектр каждого порядка имеет вид цветной полосы, в которой присутствуют все цвета радуги - от фиолетового до красного.

Дифракция белого света показана на рис. 8 . Мы видим белую полосу в центральном максимуме, а по бокам - два спектра первого порядка. По мере возрастания угла отклонения цвет полос меняется от фиолетового к красному.

Но дифракционная решётка не только позволяет наблюдать спектры, т. е. проводить качественный анализ спектрального состава излучения. Важнейшим достоинством дифракционной решётки является возможность количественного анализа - как уже говорилось выше, мы с её помощью можем измерять длины волн. При этом измерительная процедура весьма проста: фактически она сводится к измерению угла направления на максимум.

Естественными примерами дифракционных решёток, встречающихся в природе, являются перья птиц, крылья бабочек, перламутровая поверхность морской раковины. Если, прищурившись, посмотреть на солнечный свет, то можно увидеть радужную окраску вокруг ресниц.Наши ресницы действуют в данном случае как прозрачная дифракционная решётка на рис. 6 , а в качестве линзы выступает оптическая система роговицы и хрусталика.

Спектральное разложение белого света, даваемое дифракционной решёткой, проще всего наблюдать, глядя на обычный компакт-диск (рис. 9 ). Оказывается, дорожки на поверхности диска образуют отражательную дифракционную решётку!