Расчет теории вероятности онлайн. Как рассчитать вероятность события в ставках? Экспериментальная и теоретическая вероятность

Чтобы увеличить свои шансы на выигрыш, игрок должен понимать принцип работы букмекерской конторы.

Коэффициенты БК представляют собой вероятность события с определенным процентом наценки (маржей), которая в разных конторах колеблется в пределах 1.5-10%. Если бы маржи не существовало, все букмекеры бы разорились за считанные часы.

Игрок должен понимать, что собой представляют коэффициенты и ставить только на выгодные для себя цены. Поэтому ему необходимо уметь преобразовывать коэффициенты в вероятности и наоборот.

Формула перевода коэффициента в процент вероятности события:

V=1/кэф*100%

Конвертация вероятности в коэффициенты высчитывается по формуле:

К=100%/вероятность

Пример

Котировки букмекерской конторы на матч между Реалом и Ливерпулем составляют:

2.25 (П1) – 3.7 (ничья) – 3.09 (П2)

Конвертируем коэффициенты у вероятности

V(П1) = 1/2.25*100%= 44.4%

V(ничья) = 1/3.7*100%= 27%

V(П2) = 1/3.09*100%= 32.4%

Складываем вероятности этого матча и получаем суммарную вероятность

V = 44.4%+27%+32.4%= 103.8%

Многие зададутся вопросом, почему вероятность составляет больше ста процентов. Ответ банально прост, все что свыше 100% является маржей БК. В нашем случае она составляет 3.8%.

Коэффициенты на равновероятные события в идеале должны составлять К(П1) = К(П2) = 2.0 (50%), однако из-за букмекерской маржи они будут занижены. Например, если наценка БК будет составлять 7%, тогда коэффициенты будут равны 1.86, если 2%, то коэффициенты будут по 1.96.

Залог успеха успешного игрока — ставить всегда по лучшим коэффициентам. У букмекерских контор работают трейдеры, которые тоже могут ошибаться в своих расчетах. Умелые игроки такими просчетами неплохо зарабатывают себе на жизнь.

Например, победу Ювентуса над Ромой букмекер оценивает вероятностью 60% (1.66), а Вы, тщательно проанализировав матч, высчитали вероятность 67% (1.49). Если Ваши расчеты верны, то букмекерская контора даёт завышенный (ценный) коэффициент на данный исход этого события. Игрок должен непременно воспользоваться этой возможностью, сделав ставку на победу Ювентуса. Такие коэффициенты называют валуйными и при долгосрочной игре они непременно принесут игроку прибыль.

Если бы Ваша вероятность составила меньше 60%, это означало бы, что букмекерская контора занизила коэффициент на этот исход. Делать ставки по явно заниженным кэфам категорически запрещается!

Чтобы находить валуйные ставки, игроку необходимо уметь правильно анализировать вероятность исхода, хотя существует множество авторитетных сервисов, предоставляющих такие услуги за определённую плату.

  • Раздел 1. Случайные события (50 часов)
  • Тематический план дисциплины для студентов очно-заочной формы обучения
  • Тематический план дисциплины для студентов заочной формы обучения
  • 2.3. Структурно-логическая схема дисциплины
  • Математика ч.2. Теория вероятностей и элементы математической статистики Теория
  • Раздел 1 Случайные события
  • Раздел 3 Элементы математической статистики
  • Раздел 2 Случайные величины
  • 2.5. Практический блок
  • 2.6. Балльно-рейтинговая система
  • Информационные ресурсы дисциплины
  • Библиографический список Основной:
  • 3.2. Опорный конспект по курсу “ Математика ч.2. Теория вероятностей и элементы математической статистики” введение
  • Раздел 1. Случайные события
  • 1.1. Понятие случайного события
  • 1.1.1. Сведения из теории множеств
  • 1.1.2. Пространство элементарных событий
  • 1.1.3. Классификация событий
  • 1.1.4. Сумма и произведение событий
  • 1.2. Вероятности случайных событий.
  • 1.2.1. Относительная частота события, аксиомы теории вероятностей. Классическое определение вероятности
  • 1.2.2. Геометрическое определение вероятности
  • Вычисление вероятности события через элементы комбинаторного анализа
  • 1.2.4. Свойства вероятностей событий
  • 1.2.5. Независимые события
  • 1.2.6. Расчет вероятности безотказной работы прибора
  • Формулы для вычисления вероятности событий
  • 1.3.1. Последовательность независимых испытаний (схема Бернулли)
  • 1.3.2. Условная вероятность события
  • 1.3.4. Формула полной вероятности и формула Байеса
  • Раздел 2. Случайные величины
  • 2.1. Описание случайных величин
  • 2.1.1. Определение и способы задания случайной величины Одним из основных понятий теории вероятности является понятие случайной величины. Рассмотрим некоторые примеры случайных величин:
  • Чтобы задать случайную величину, надо указать ее закон распределения. Случайные величины принято обозначать греческими буквами ,,, а их возможные значения – латинскими буквами с индексамиxi,yi,zi.
  • 2.1.2. Дискретные случайные величины
  • Рассмотрим события Ai , содержащие все элементарные события , приводящие к значению XI:
  • Пусть pi обозначает вероятность события Ai:
  • 2.1.3. Непрерывные случайные величины
  • 2.1.4. Функция распределения и ее свойства
  • 2.1.5. Плотность распределения вероятности и ее свойства
  • 2.2. Числовые характеристики случайных величин
  • 2.2.1. Математическое ожидание случайной величины
  • 2.2.2. Дисперсия случайной величины
  • 2.2.3. Нормальное распределение случайной величины
  • 2.2.4. Биномиальное распределение
  • 2.2.5. Распределение Пуассона
  • Раздел 3. Элементы математической статистики
  • 3.1. Основные определения
  • Гистограмма
  • 3.3. Точечные оценки параметров распределения
  • Основные понятия
  • Точечные оценки математического ожидания и дисперсии
  • 3.4. Интервальные оценки
  • Понятие интервальной оценки
  • Построение интервальных оценок
  • Основные статистические распределения
  • Интервальные оценки математического ожидания нормального распределения
  • Интервальная оценка дисперсии нормального распределения
  • Заключение
  • Глоссарий
  • 4. Методические указания к выполнению лабораторных работ
  • Библиографический список
  • Лабораторная работа 1 описание случайных величин. Числовые характеристики
  • Порядок выполнения лабораторной работы
  • Лабораторная работа 2 Основные определения. Систематизация выборки. Точечные оценки параметров распределения. Интервальные оценки.
  • Понятие статистической гипотезы о виде распределения
  • Порядок выполнения лабораторной работы
  • Ячейка Значение Ячейка Значение
  • 5. Методические указания к выполнению контрольной работы Задание на контрольную работу
  • Методические указания к выполнению контрольной работы События и их вероятности
  • Случайные величины
  • Среднее квадратическое отклонение
  • Элементы математической статистики
  • 6. Блок контроля освоения дисциплины
  • Вопросы для экзамена по курсу « Математика ч.2. Теория вероятностей и элементы математической статистики»
  • Продолжение таблицы в
  • Окончание таблицы в
  • Равномерно распределенные случайные числа
  • Содержание
  • Раздел 1. Случайные события………………………………………. 18
  • Раздел 2 . Случайные величины..………………………… ….. 41
  • Раздел 3. Элементы математической статистики............... . 64
  • 4. Методические указания к выполнению лабораторных
  • 5. Методические указания к выполнению контрольной
      1. Формулы для вычисления вероятности событий

    1.3.1. Последовательность независимых испытаний (схема Бернулли)

    Предположим, что некоторый эксперимент можно проводить неоднократно при одних и тех же условиях. Пусть этот опыт производится n раз, т. е. проводится последовательность из n испытаний.

    Определение. Последовательность n испытаний называют взаимно независимой , если любое событие, связанное с данным испытанием, не зависит от любых событий, относящихся к остальным испытаниям.

    Допустим, что некоторое событие A может произойти с вероятностью p в результате одного испытания или не произойти с вероятностью q = 1- p .

    Определение . Последовательность из n испытаний образует схему Бернулли, если выполняются следующие условия:

      последовательность n испытаний взаимно независима,

    2) вероятность события A не изменяется от испытания к испытанию и не зависит от результата в других испытаниях.

    Событие A называют “ успехом” испытания, а противоположное событие - “неудачей”. Рассмотрим событие

    ={ в n испытаниях произошло ровно m “успехов”}.

    Для вычисления вероятности этого события справедлива формула Бернулли

    p () =
    , m = 1, 2, …, n , (1.6)

    где - число сочетаний из n элементов по m :

    =
    =
    .

    Пример 1.16. Три раза подбрасывают кубик. Найти:

    а) вероятность того, что 6 очков выпадет два раза;

    б) вероятность того, что число шестерок не появится более двух раз.

    Решение . “Успехом” испытания будем считать выпадение на кубике грани с изображением 6 очков.

    а) Общее число испытаний – n =3, число “успехов” – m = 2. Вероятность “успеха” - p =, а вероятность “неудачи” - q = 1 - =. Тогда по формуле Бернулли вероятность того, что результате трехразового бросания кубика два раза выпадет сторона с шестью очками, будет равна

    .

    б) Обозначим через А событие, которое заключается в том, что грань с числом очков 6 появится не более двух раз. Тогда событие можно представить в виде суммы трех несовместных событий А=
    ,

    где В 3 0 – событие, когда интересующая грань ни разу не появится,

    В 3 1 - событие, когда интересующая грань появится один раз,

    В 3 2 - событие, когда интересующая грань появится два раза.

    По формуле Бернулли (1.6) найдем

    p (А ) = р (
    ) = p (
    )=
    +
    +
    =

    =
    .

    1.3.2. Условная вероятность события

    Условная вероятность отражает влияние одного события на вероятность другого. Изменение условий, в которых проводится эксперимент, также влияет

    на вероятность появления интересующего события.

    Определение. Пусть A и B – некоторые события, и вероятность p (B )> 0.

    Условной вероятностью события A при условии, что “событие B уже произошло” называется отношение вероятности произведения данных событий к вероятности события, которое произошло раньше, чем событие, вероятность которого требуется найти. Условная вероятность обозначается как p (A B ). Тогда по определению

    p (A B ) =
    . (1.7)

    Пример 1.17. Подбрасывают два кубика. Пространство элементарных событий состоит из упорядоченных пар чисел

    (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)

    (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

    (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)

    (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)

    (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

    (6,1) (6,2) (6,3) (6,4) (6,5) (6,6).

    В примере 1.16 было установлено, что событие A ={число очков на первом кубике > 4} и событие C ={сумма очков равна 8} зависимы. Составим отношение

    .

    Это отношение можно интерпретировать следующим образом. Допустим, что о результате первого бросания известно, что число очков на первом кубике > 4. Отсюда следует, что бросание второго кубика может привести к одному из 12 исходов, составляющих событие A :

    (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)

    (6,1) (6,2) (6,3) (6,4) (6,5) (6,6) .

    При этом событию C могут соответствовать только два из них (5,3) (6,2). В этом случае вероятность события C будет равна
    . Таким образом, информация о наступлении событияA оказала влияние на вероятность события C .

          Вероятность произведения событий

    Теорема умножения

    Вероятность произведения событий A 1 A 2 A n определяется формулой

    p (A 1 A 2 A n ) = p (A 1) p (A 2 A 1))p (A n A 1 A 2 A n- 1). (1.8)

    Для произведения двух событий отсюда следует, что

    p (AB ) = p (A B) p {B ) = p (B A ) p {A ). (1.9)

    Пример 1.18. В партии из 25 изделий 5 изделий бракованных. Последовательно наугад выбирают 3 изделия. Определить вероятность того, что все выбранные изделия бракованные.

    Решение. Обозначим события:

    A 1 = {первое изделие бракованное},

    A 2 = {второе изделие бракованное},

    A 3 = {третье изделие бракованное},

    A = {все изделия бракованные}.

    Событие А есть произведение трех событий A = A 1 A 2 A 3 .

    Из теоремы умножения (1.6) получим

    p (A ) = р( A 1 A 2 A 3 ) = p (A 1) p (A 2 A 1))p (A 3 A 1 A 2).

    Классическое определение вероятности позволяет найти p (A 1) – это отношение числа бракованных изделий к общему количеству изделий:

    p (A 1)= ;

    p (A 2)это отношение числа бракованных изделий, оставшихся после изъятия одного, к общему числу оставшихся изделий:

    p (A 2 A 1))= ;

    p (A 3) – это отношение числа бракованных изделий, оставшихся после изъятия двух бракованных, к общему числу оставшихся изделий:

    p (A 3 A 1 A 2)=.

    Тогда вероятность события A будет равна

    p (A ) ==
    .

    Объединением (логической суммой) N событий называют событие, которое наблюдается каждый раз, когда на­ступаетхотя бы одно из событий. В частности, объединением событий A и B называют событие A + B (у некоторых авторов
    ), которое наблюдается, когданаступает или A, или B или оба этих события одновременно (Рис. 7). Признаком пересечения в тексто­вых формулировках событий служит союз“или” .

    Рис. 7. Объединение событий A+B

    Необходимо учитывать, что вероятности события P{A} соответствует как левая часть заштрихованной на Рис. 7 фигуры, так и её центральная часть, помеченная как
    . И исходы, соответствующие событию B, располагаются как в правой части заштрихованной фигуры, так и в помеченной
    центральной части. Таким образом, при сложениииплощадка
    реально войдет в эту сумму дважды, а точное выражение для площади заштрихованнойфигуры имеет вид
    .

    Итак, вероятность объединения двух событий A и B равна

    Для большего числа событий общее расчетное выражение становится крайне громоздким из-за необходимости учета многочисленных вариантов взаимного наложения областей. Однако, если объединяемые события являются несовместными (см. с. 33), то взаимное наложение областей оказывается невозможным, а благоприятная зона определяется непосредственно суммой областей, соответствующих отдельным событиям.

    Вероятность объединения произвольного числанесов­местных событийопределяется выражением

    Следствие 1 : Полная группа событий состоит из событий несовместных, одно из которых в опыте обязательно реализуется. В результате,если события
    ,образуют полную группу , то для них

    Таким образом,

    С ледствие 3 Учтем, что противоположным утверждению «произойдет хотя бы одно из событий
    » является утверждение «ни одно из событий
    не реализуется». Т.е., иначе говоря, «в опыте будут наблюдаться события, и, и …, и», что представляет собой уже пересечение событий, противоположных исходному набору. Отсюда, с учетом (2 .0), для объединения произвольного числа событий получаем

    Следствия 2, 3 показывают, что в тех случаях, когда непосредственный расчет вероятности какого-то события является проблематичным, полезно оценить трудоёмкость исследования события ему противоположного. Ведь, зная значение
    , получить из (2 .0) нужную величину
    никакого труда уже не представляет.

      1. Примеры расчетов вероятностей сложных событий

    Пример 1 : Двое студентов (Иванов и Петров) вместе я вились на защиту лабораторной работы, выучив первые 8 кон трольных вопросов к этой работе из 10 имеющихся. Проверяя подготовленность, п реподаватель задает каждому лишь оди н случайно выбираемый вопрос. Определить вероятность следующих событий:

    A = “Иванов защитит лабораторную работу”;

    B = “Петров защитит лабораторную работу”;

    C = “оба защитят лабораторную работу”;

    D = “хотя бы один из студентов защитит работу”;

    E = “только один из студентов защитит работу”;

    F = “никто из них не защитит работу”.

    Решение. Отметим, что способность защитить работу как Иванова, т ак и Петрова в отдельности определяется лишь числом освоенных вопросов, поэтом у . (Примечание: в данном примере значения получаемых дробей сознательно не сокращались для упрощения сопоставления результатов расчетов.)

    Событие C можно сформулировать иначе как «работу защитит и Иванов, и Петров», т.е. произойдут и событие A , и событие B . Таким образом, событие C является пересечением событий A и B , и в соответствии с (2 .0)

    где сомножитель “7/9” появляется из-за того, что наступление события A означает, что Иванову достался «удачный» вопрос, а значит на долю Петрова из оставшихся 9 вопросов приходится теперь лишь 7 «хороших» вопросов.

    Событие D подразумевает, что «работу защитит или Иванов, или Петров, или они оба вместе», т.е. произойдёт хотя бы одно из событий A и B . Итак, событие D является объединением событий A и B , и в соответствии с (2 .0)

    что соответствует ожиданиям, т.к. даже для каждого из студентов в отдельности шансы на успех довольно велики.

    С обытие Е означает, что «либо работу защитит Ивано в, а Петров «п ровалится», или Иванову попадется неудачный во прос, а Петров с защитой справится». Два альтернативных варианта являются взаимоисключающими (несовместными), поэтому

    Наконец, утверждение F окажется справедливым лишь если « и Иванов, и Петров с защитой не справятся». Итак,

    На этом решение задачи завершено, однако полезно отметить следующие моменты:

    1. Каждая из полученных вероятностей удовлетворяет условию (1 .0), н о если для
    и
    получить конфликт
    ующие с (1 .0) в принципе невозможно, то для
    попытка и
    спользования (2 .0) вместо (2 .0) привела бы к явно некорр ектному значению
    . Важно помнить, что подобное значение вероятности принципиально невозможно, и при получении столь парадоксального результата незамедлительно приступать к поиску ошибки.

    2. Найденные вероятности удовлетворяют соотношения м

    .

    Э то вполне ожидаемо, т.к. события C , E и F образуют полн ую группу, а события D и F противоположны друг другу. Учет этих соотношений с одной стороны может быть использо ван для перепроверки расчетов, а в другой ситуации может послужить основой альтернативного способа решения задачи.

    П римечание : Не пренебрегайте письменной фиксацией точной формулировки события, иначе по ходу решения задачи Вы можете непроизвольно перейти к иной трактовке смысла этого события, что повлечет ошибки в рассуждениях.

    Пример 2 : В крупной партии микросхем, не прошедших выходной контроль качества, 30% изделий являются бракованными. Если из этой партии наугад выбрать какие-либо две микросхемы, то какова вероятность, что среди них:

    A = “обе годные”;

    B = “ровно 1 годная микросхема”;

    C = “обе бракованные”.

    Проанализируем следующий вариант рассуждений (осторожно, содержит ошибку):

    Так как речь идет о крупной партии изделий, то изъятие из неё нескольких микросхем практически не влияет на соотношение числа годных и бракованных изделий, а значит, выбирая несколько раз подряд какие-то микросхемы из этой партии, можно считать, что в каждом из случаев остаются неизменными вероятности

    = P { выбрано бракованное изделие } = 0,3 и

    = P { выбрано годное изделие } = 0,7.

    Для наступления события A необходимо, чтобы и в первый, и во второй раз было выбрано годное изделии, а потому (учитывая независимость друг от друга успешности выбора первой и второй микросхемы) для пересечения событий имеем

    Аналогично, для наступления события С нужно, чтобы оба изделия оказались бракованными , а для получения B нужно один раз выбрать годное, а один – бракованное изделие.

    Признак ошибки. Х отя все полученные выше вероятност и выглядят правдоподобными, при их совместном анализе легко з аметить, что .Однако случаи A , B и C образуют полную группу событий, для которой должно выполняться .Это противоречие указывает на наличие какой-то ошибки в рассуждениях.

    С уть ошибки. Введем в рассмотрение два вспомогате льных события :

    = “первая микросхема – годная, вторая - бракованная”;

    = “первая микросхема – бракованная, вторая – годная”.

    Очевидно, что , однако именно такой вариант расчета был выше использован для получения вероятности события B , хотя события B и не являются э квивалентными . На самом деле,
    , т.к. формулировка
    события B требует, чтобы среди микросхем ровно одна , но совсем не обязательно первая была годной (а другая – бракованной). Поэтому, хотя событие не является дублем события, а должно учиты ваться независимо. Учитывая несовместность событий и, вероятность их логической суммы будет равна

    После указанного исправления расчетов имеем

    что косвенно подтверждает корректность найденных вероятностей.

    Примечание : Обращайте особое внимание на отличие в формулировках событий типа “только первый из перечисленных элементов должен…” и “только один из перечисленных элем ентов должен…”. Последнее событие явно шире и включае т в свой состав первое как один из (возможно многочисленны х) вариантов. Эти альтернативные варианты (даже при совпадении их вероятностей) следует учитывать независимо друг от друга.

    П римечание : Слово “процент” произошло от “ per cent ”, т.е. “на сотню”. Представление частот и вероятностей в процентах позволяет оперировать более крупными значениями, что иногда упрощает восприятие значений “на слух”. Однако использовать в расчетах для правильной нормировки умножение или деление на “100 %” громоздко и неэффективно. В связи с этим, не з абывайте при использовании значений, упомя нутых в процентах, подставлять их в расчетные выражения у же в виде долей от единицы (например, 35% в расчете записываетс я как “0,35”), чтобы минимизировать риск ошибочной нормировки результатов.

    Пример 3 : Набор резисторов содержит один резистор н оминалом 4 кОм, три резистора по 8 кОм и шесть резист оров с сопротивлением 15 кОм. Выбранные наугад три резистора соединяются друг с другом параллельно. Определить вероятность получения итогового сопротивления, не превышающего 4 кОм.

    Реш ение. Сопротивление параллельного соединения рез исторов может быть рассчитано по формуле

    .

    Это позволяет ввести в рассмотрение события, такие как

    A = “выбраны три резистора по 15 кОм” = “
    ;

    B = “в зяты два резистора по 15 кОм и один с сопротивление м 8 кОм” =“

    Полная группа событий, соответствующих условию задачи, включает ещё целый ряд вариантов, причем именно таких, к оторые соответствуют выдвинутому требованию о получении сопротивления не более чем 4 кОм. Однако, хотя “прямой” путь решения, предполагающий расчет (и последующее сумми рование) вероятностей, характеризующих все эти события, и является правильным, действовать таким образом нецелесообразно.

    Отметим, что для получения итогового сопротивления менее 4 кОм д остаточно, чтобы в используемый набор вошел хотя бы один резистор с сопротивлени ем менее 15 кОм. Таким образом, лишь в случае A требование задачи не выполняется, т.е. событие A является противоположным исследуемому. Вместе с тем,

    .

    Таким образом, .

    П ри мечание : Рассчитывая вероятность некоторого события A , не забывайте проанализировать трудоемкость определени я ве­роятности события ему противоположного. Если расс читать
    легко, то именно с этого и надо начинать решен ие задачи , завершая его применением соотношения (2 .0).

    П ример 4 : В коробке имеются n белых, m черных и k красных шаров. Шары по одному наугад извлекаются из коробки и возвращаются обратно после каждого извлечения. Определить вероятность события A = “белый шар будет извлечен раньше, чем черный .

    Реш ение. Рассмотрим следующую совокупность событий

    = “белый шар извлекли при первой же попытке”;

    = “сначала вынули красный шар, а затем - белый”;

    = “дважды вынули красный шар, а на третий раз - белый ”…

    Так к ак шарики возвращаются, то последовательность соб ытий может быть формально бесконечно протяженной.

    Эти события являются несовместными и составляют в совокупности тот набор ситуаций, при которых происходит событие A . Таким образом,

    Несложно заметить, что входящие в сумму слагаемые образуют геометрическую прогрессию с начальным элементом
    и знаменателем
    . Но сумм
    а элементов бесконечной геометрической прогрессии равна

    .

    Таким образом, . Л юбопытно, что эта вероятность (как следует из полученно го выражения) не зависит от числа красных шаров в коробке.

    Итак, поговорим на тему, которая интересует очень многих. В данной статье я вам отвечу на вопрос о том, как рассчитать вероятность события. Приведу формулы для такого расчета и несколько примеров, чтобы было понятнее, как это делается.

    Что такое вероятность

    Начнем с того, что вероятность того, что то или иное событие произойдет – некая доля уверенности в конечном наступлении какого-то результата. Для этого расчета разработана формула полной вероятности, позволяющая определить, наступит интересующее вас событие или нет, через, так называемые, условные вероятности. Эта формула выглядит так: Р = n/m, буквы могут меняться, но на саму суть это никак не влияет.

    Примеры вероятности

    На простейшем примере разберем эту формулу и применим ее. Допустим, у вас есть некое событие (Р), пусть это будет бросок игральной кости, то есть равносторонний кубик. И нам требуется подсчитать, какова вероятность выпадения на нем 2 очков. Для этого нужно число положительных событий (n), в нашем случае – выпадение 2 очков, на общее число событий (m). Выпадение 2 очков может быть только в одном случае, если на кубике будет по 2 очка, так как по другому, сумма будет больше, из этого следует, что n = 1. Далее подсчитываем число выпадения любых других цифр на кости, на 1 кости – это 1, 2, 3, 4, 5 и 6, следовательно, благоприятных случаев 6, то есть m = 6. Теперь по формуле делаем нехитрое вычисление Р = 1/6 и получаем, что выпадение на кости 2 очков равно 1/6, то есть вероятность события очень мала.

    Еще рассмотрим пример на цветных шарах, которые лежат в коробке: 50 белых, 40 черных и 30 зеленых. Нужно определить какова вероятность вытащить шар зеленого цвета. И так, так как шаров этого цвета 30, то есть, положительных событий может быть только 30 (n = 30), число всех событий 120, m = 120 (по общему количеству всех шаров), по формуле рассчитываем, что вытащить зеленый шар вероятность равна будет Р = 30/120 = 0,25, то есть 25 % из 100. Таким же образом, можно вычислить и вероятность вытащить шар другого цвета (черного она будет 33%, белого 42%).

    Существует целый класс опытов, для которых вероятности их возможных исходов легко оценить непосредственно из условий самого опыта. Для этого нужно, чтобы различные исходы опыта обладали симметрией и в силу этого были объективно одинаково возможными.

    Рассмотрим, например, опыт, состоящий в бросании игральной кости, т.е. симметричного кубика, на гранях которого нанесено различное число очков: от 1 до 6.

    В силу симметрии кубика есть основания считать все шесть возможных исходов опыта одинаково возможными. Именно это дает нам право предполагать, что при многократном бросании кости все шесть граней будут выпадать примерно одинаково часто. Это предположение для правильно выполненной кости действительно оправдывается на опыте; при многократном бросании кости каждая её грань появляется примерно в одной шестой доле всех случаев бросания, причем отклонение этой доли от 1/6 тем меньше, чем большее число опытов произведено. Имея в виду, что вероятность достоверного события принята равной единице, естественно приписать выпадению каждой отдельной грани вероятность, равную 1/6. Это число характеризует некоторые объективные свойства данного случайного явления, а именно свойство симметрии шести возможных исходов опыта.

    Для всякого опыта, в котором возможные исходы симметричны и одинаково возможны, можно применить аналогичный прием, который называется непосредственным подсчетом вероятностей.

    Симметричность возможных исходов опыта обычно наблюдается только в искусственно организованных опытах, типа азартных игр. Так как первоначальное развитие теория вероятностей получила именно на схемах азартных игр, то прием непосредственного подсчета вероятностей, исторически возникший вместе с возникновением математической теории случайных явлений, долгое время считался основным и был положен в основу так называемой «классической» теории вероятностей. При этом опыты, не обладающие симметрией возможных исходов, искусственно сводились к «классической» схеме.

    Несмотря на ограниченную сферу практических применений этой схемы, она все же представляет известный интерес, так как именно на опытах, обладающих симметрией возможных исходов, и на событиях, связанных с такими опытами, легче всего познакомиться с основными свойствами вероятностей. Такого рода событиями, допускающими непосредственный подсчет вероятностей, мы и займемся в первую очередь.

    Предварительно введем некоторые вспомогательные понятия.

    1. Полная группа событий.

    Говорят, что несколько событий в данном опыте образуют полную группу событий, если в результате опыта непременно должно появиться хотя бы одно из них.

    Примеры событий, образующих полную группу:

    3) появление 1,2,3,4,5,6 очков при бросании игральной кости;

    4) появление белого шара и появление черного шара при вынимании одного шара из урны, в которой 2 белых и 3 черных шара;

    5) ни одной опечатки, одна, две, три и более трех опечаток при проверке страницы напечатанного текста;

    6) хотя бы одно попадание и хотя бы один промах при двух выстрелах.

    2. Несовместимые события.

    Несколько событий называют несовместимыми в данном опыте, если никакие два из них не могут появиться вместе.

    Примеры несовместимых событий:

    1) выпадение герба и выпадение цифры при бросании монеты;

    2) попадание и промах при выстреле;

    3) появление 1,3, 4 очков при одном бросании игральной кости;

    4) ровно один отказ, ровно два отказа, ровно три отказа технического устройства за десять часов работы.

    3. Равновозможные события.

    Несколько событий в данном опыте называются равновозможными, если по условиям симметрии есть основание считать, что ни одно из этих событий не является объективно более возможным, чем другое.

    Примеры равновозможных событий:

    1) выпадение герба и выпадение цифры при бросании монеты;

    2) появление 1,3, 4, 5 очков при бросании игральной кости;

    3) появление карты бубновой, червонной, трефовой масти при вынимании карты из колоды;

    4) появление шара с №1, 2, 3 при вынимании одного шара из урны, содержащей 10 перенумерованных шаров.

    Существуют группы событий, обладающие всеми тремя свойствами: они образуют полную группу, несовместимы и равновозможны; например: появление герба и цифры при бросании монеты; появление 1, 2, 3, 4, 5, 6 очков при бросании игральной кости. События, образующие такую группу, называются случаями (иначе «шансами»).

    Если какой-либо опыт по своей структуре обладает симметрией возможных исходов, то случаи представляют собой исчерпывающую систему равновозможных и исключающих друг друга исходов опыта. Про такой опыт говорят, что он «сводится к схеме случаев» (иначе – к «схеме урн»).

    Схема случаев по преимуществу имеет место в искусственно организованных опытах, в которых заранее и сознательно обеспечена одинаковая возможность исходов опыта (как, например, в азартных играх). Для таких опытов возможен непосредственный подсчет вероятностей, основанный на оценке доли так называемых «благоприятных» случаев в общем числе случаев.

    Случай называется благоприятным (или «благоприятствующим») некоторому событию, если появление этого случая влечет за собой появление данного события.

    Например, при бросании игральной кости возможны шесть случаев: появление 1, 2, 3, 4, 5, 6 очков. Из них событию – появлению четного числа очков – благоприятны три случая: 2, 4, 6 и не благоприятны остальные три.

    Если опыт сводится к схеме случаев, то вероятность события в данном опыте можно оценить по относительной доле благоприятных случаев. Вероятность события вычисляется как отношение числа благоприятных случаев к общему числу случаев:

    где Р(А) – вероятность события ; – общее число случаев; – число случаев, благоприятных событию .

    Так как число благоприятных случаев всегда заключено между 0 и (0 – для невозможного и – для достоверного события), то вероятность события, вычисленная по формуле (2.2.1), всегда есть рациональная правильная дробь:

    Формула (2.2.1), так называемая «классическая формула» для вычисления вероятностей, долгое время фигурировала в литературе как определение вероятности. В настоящее время при определении (пояснении) вероятности обычно исходят из других принципов, непосредственно связывая понятие вероятности с эмпирическим понятием частоты; формула же (2.2.1) сохраняется лишь как формула для непосредственного подсчета вероятностей, пригодная тогда и только тогда, когда опыт сводится к схеме случаев, т.е. обладает симметрией возможных исходов.