Понятие об игровых моделях. Платежная матрица. Нижняя и верхняя цена игры. Матричные игры: примеры решения задач. Матричные игры с оптимальной смешанной стратегией

Рассмотрим игру с матрицей

Буквой i будем обозначать номер нашей стратегии, буквой - номер стратегии противника.

Отбросим вопрос о смешанных стратегиях и будем рассматривать пока только чистые. Поставим задачу: определить наилучшую среди наших стратегий Проанализируем последовательно каждую из них, начиная с и кончая Выбирая мы должны рассчитывать, что противник ответит на нее той из стратегий для которой наш выигрыш минимален. Найдем минимальное из чисел строке и обозначим его

(знак обозначает минимальное значение данного параметра при всех возможных

Выпишем числа (минимумы строк) рядом с матрицей справа в виде добавочного столбца:

Выбирая какую-то стратегию , мы должны рассчитывать на то, что в результате разумных действий противника мы выиграем только Естественно, действуя наиболее осторожно (т. е. избегая всякого риска), мы должны предпочесть другим ту стратегию, для которой число максимально. Обозначим это максимальное значение

или. принимая во внимание формулу (4.1),

Величина а называется нижней ценой игры, иначе - максиминным выигрышем или максимином. Та стратегия игрока А, которая соответствует максимину а, называется максиминной стратегией.

Очевидно, если мы будем придерживаться максиминной стратегии, то нам при любом поведении противника гарантирован выигрыш, во всяком случае, не меньший а. Поэтому величина а и называется «нижней ценой игры». Это - тот гарантированный минимум, который мы можем себе обспечить, придерживаясь своей наиболее осторожной («перестраховочной») стратегии.

Очевидно, аналогичное рассуждение можно провести и за противника В. Он (аинтересован в том, чтобы обратить наш выигрыш в минимум; значит, он должен просмотреть все свои стратегии, выделяя для каждой из них максимальное значение выигрыша. Выпишем внизу матрицы (4,2) максимальные значения по столбцам:

и найдем их них минимальное:

(4.4)

Величина называется верхней ценой игры, иначе минимаксным выигрышем или минимаксом. Соответствующая выигрышу стратегия противника называется его минимаксной стратегией. Придерживаясь своей наиболее осторожной минимаксной стратегии, противник гарантирован, что в любом случае он проиграет не больше р.

Принцип осторожности, диктующий игрокам выбор соответствующих стратегий (максиминной и минимаксной), является в теории игр основным и называется принципом минимакса. Он вытекает из предположения о разумности каждого игрока, стремящегося достигнуть цели, противоположной цели противника. Наиболее «осторожные» максиминную и минимаксную стратегии часто обозначают общим термином «минимаксные стратегии».

Определим нижнюю и верхнюю цены игры, а также минимаксные стратегии, для трех примеров, рассмотренных в предыдущем параграфе.

Пример 1. (Игра «поиск»). Определяя минимумы строк и максимумы столбцов получим

Так как величины , постоянны и равны соответственно -1 и нижняя и верхняя цены игры также равны -1 и

Любая стратегия игрока А является его максиминной, а игрока В - его минимаксной стратегией. Вывод тривиален: придерживаясь любой из своих стратегий, игрок А может гарантировать, что он проиграет не более 1 руб.; то же может гарантировать и игрок В при любой своей стратегии.

Пример 2. (Игра три пальца»). Выписывая минимумы строк и максимумы столбцов, найдем нижнюю цену игры и верхнюю (выделены в таблице жирным шрифтом). Наша максиминная стратегия (применяя ее систематически, мы гарантируем, что выиграем не меньше -3, т. е. проиграем не больше 3).

Минимаксная стратегия противника - любая из стратегий применяя их систематически, он может гарантировать, что не отдаст более 4. Если мы отступим от своей максиминной стратегии (например, выберем А 2), то противник может нас «наказать» за это, применив и сведя наш выигрыш равным образом и отступление противника от его минимаксной стратегии может быть «наказано» увеличением его проигрыша до 6.

Обратим внимание на то, что минимаксные стратегии в данном случае не устойчивы. Действительно, пусть, например, противник выбрал одну из своих минимаксных стратегий и придерживается ее. Узнав об этом, мы перейдем к стратегии и будем выигрывать 4. На это противник ответит стратегией и будет выигрывать 5; на это мы, в свою очередь, ответим стратегией и будем выигрывать 4, и т. д. Таким образом, положение, при котором оба игрока пользуются своими минимаксными стратегиями, является неустойчивым и может быть нарушено поступившими сведениями о стратегии, которую применяет противная сторона. Однако такая неустойчивость наблюдается не всегда; в этом мы убедимся на следующем примере.

Пример 3. (Игра «вооружение и самолет»). Определяем минимумы строк и максимумы столбцов:

В данном случае нижняя цена игры равна верхней:

Минимаксные стратегии являются устойчивыми: если один из игроков придерживается своей минимаксной (максиминной) стратегии, то другой игрок никак не может улучшить свое положение, отступая от своей.

Таким образом, мы видим, что существуют игры, для которых нижняя цена равна верхней:

Эти игры занимают особое место в теории игр и называются играми с седловой точкой. В матрице такой игры существует элемент, являющийся одновременно минимальным в своей строке и максимальным в своем столбце; такой элемент называется седловой точкой» (по аналогии с седловой точкой на поверхности, где достигается минимум по одной координате и максимум по другой).

Общее значение нижней и верхней цены игры

называется чистой ценой игры.

Седловой точке соответствует пара минимаксных стратегий, эти стратегии называются оптимальными, а их совокупность - решением игры. Решение игры обладает следующим свойством: если один из игроков придерживается своей оптимальной стратегии, то для другого не может быть выгодным отклоняться от своей оптимальной (такое отклонение либо оставит положение неизменным, либо ухудшит его).

Действительно, пусть в игре с седловой точкой игрок А придерживается своей оптимальной стратегии, а игрок В - своей. До тех пор, пока это так - выигрыш остается постоянным и равным цене игры v. Теперь допустим, что В допустил отклонение от своей оптимальной стратегии. Так как элемент v является минимальным в своей строке, такое отклонение не может быть выгодным для В; равным образом и для А, если В придерживается своей оптимальной стратегии, не может быть выгодно отклонение от своей.

Мы видим, что для игры с седловой точкой минимаксные стратегии обладают устойчивостью. Пара оптимальных стратегий в игре с седловой точкой является как бы положением равновесия: отклонение от оптимальной стратегии вызывает такое изменение выигрыша, которое невыгодно для отклоняющегося игрока и вынуждает его вернуться к своей оптимальной стратегии.

Чистая цена игры v в игре с седловой точкой является тем значением выигрыша, которое в игре против разумного противника игрок А не может увеличить, а игрок В - уменьшить.

Заметим, что в платежной матрице может быть не одна седловая точка, а несколько.

Например, в матрице имеется шесть седловых точек, с общим значением выигрыша и соответствующими парами оптимальных стратегий: Нетрудно доказать (мы этого делать не будем), что если в матрице игры несколько седловых точек, то все они дают одно и то же значение выигрыша.

Пример. Сторона А - средства ПВО - обороняет от воздушного налета участок территории, располагая двумя орудиями № 1 и № 2, зоны действия которых не перекрываются (рис. 9.1). Каждое орудие может обстрелять только самолет, проходящий через его зону действия, но для этого оно должно заранее (до входа цели в зону) следить за ней и вырабатывать прицельные данные Если цель обстреляна, она поражается с вероятностью Сторона В располагает двумя самолетами, каждый из которых может быть направлен в любую зону В момент, когда сторона А осуществляет целераспределение (назначает, какому орудию по какой цели стрелять), движение самолета-цели № 1 направлено в зону действия орудия № 1, а цели № 2 - в зону действия орудия № 2. Однако после принятия решения по целераспределению каждая цель может сманеврировать, применив «обманный маневр» (см. пунктирные стрелки на рис 9.1).

Задача стороны А - обратить в максимум, а стороны В - обратить в минимум число пораженных целей Найти решение игры (оптимальные стратегии сторон)

Решение. У стороны А (средства ПВО) четыре возможные стратегии - каждое орудие следит за направляющейся в его зону целью,

Орудия следят за целями «крест-накрест» (каждое - за целью направляющейся к соседу),

Оба орудия следят за целью № 1,

Оба орудия следят за целью № 2 У стороны В (самолеты-цели) тоже четыре стратегии:

Обе целн не меняют направления,

Обе цели применяют обманный маневр.

Первая цель применяет обманный маневр, а вторая нет,

Вторая цель применяет обманный маневр, а первая нет.

Получается игра 4X4, матрица которой дана в таблице:

Находя минимумы строк и максимумы столбцов, убеждаемся, что нижняя цена игры равна верхней цене игры: значит, игра имеет седловую точку и решение в чистых стратегиях, приводящее к чистой цене игры . В данном случае седловых точек не одна, а целых четыре Каждой из них со ответствует пара оптимальных стратегий, дающая решение игры Цена игры означает, что при оптимальном поведении сторон самолеты будут неизбежно терять один самолет, и никакие ухищрения не помогут им терять меньше, а средствам ПВО - сбить больше одного самолета Достигается это состояние равновесия, когда обе стороны пользуются своими оптимальными стратегиями: орудия следят оба за одним и тем же самолетом (любым), а самолеты направляются после целераспределения в одну и ту же зону (любую)

Класс игр, имеющих седловую точку, весьма интересен как с теоретической, так и с практической точки зрения. К нему принадлежат, в частности, все так называемые «игры с полной информацией».

Игрой с полной информацией называется такая игра, в которой каждый игрок при каждом личном ходе знает результаты всех предыдущих ходов - как личных, так и случайных. Примерами игр с полной информацией могут служить: шашки, шахматы, известная игра в «крестики и нолики» и др.

В теории игр доказывается, что каждая игра с полной информацией имеет седловую точку и следовательно, решение в чистых стратегиях. Другими словами, в каждой игре с полной информацией существует пара оптимальных стратегий той и другой стороны, дающая устойчивый выигрыш, равный чистой цене игры. Если игра с полной информацией состоит только из личных ходов, то при применении каждой стороной своей оптимальной стратегии игра должна кончаться всегда вполне определенным исходом, равным цене игры

В качестве примера приведем следующую игру с полной информацией. Два игрока поочередно кладут одинаковые монеты на круглый стол, выбирая произвольно положение монеты (взаимное перекрытие монет не допускается). Выигрывает тот, кто положит последнюю монету (когда места для других уже не останется). Нетрудно убедиться, что исход этой игры предрешен, и существует определенная стратегия, обеспечивающая достоверный выигрыш тому из игроков, кто кладет монету первым. А именно, он должен первый раз положить монету в центр стола, а далее на каждый ход противника отвечать симметричным ходом. Очевидно, как бы ни вел себя противник, ему не избежать проигрыша. Поэтому игра имеет смысл только для лиц, не знающих ее решения. Точно так же дело обстоит с шахматами и другими играми с полной информацией; любая из этих игр обладает седловой точкой и, значит, решением, указывающим каждому игроку его оптимальную стратегию, так что игра имеет смысл только до тех пор, пока неизвестно решение. Решение шахматной игры не найдено (и в обозримом будущем вряд ли будет найдено) только потому, что число стратегий (комбинаций ходов) в шахматах слишком велико, чтобы можно было построить платежную матрицу и найти в ней седловую точку.

Лекция 9. Понятие об игровых моделях. Платежная матрица.

§ 6 ЭЛЕМЕНТЫ ТЕОРИИ ИГР

6.1 Понятие об игровых моделях.

Математи­ческая модель конфликтной ситуации называется игрой , стороны, участвующие в конфликте, – игроками, а исход конфликта – выигрышем .

Для каждой формализованной игры вводятся правила , т.е. система условий, определяющая: 1) варианты действий игро­ков; 2) объем информации каждого игрока о поведении партне­ров; 3) выигрыш, к которому приводит каждая совокупность дей­ствий. Как правило, выигрыш (или проигрыш) может быть задан количественно; например, можно оценить проигрыш нулем, выигрыш – единицей, а ничью – 1/2. Количественная оценка результатов игры называется платежом .

Игра называется парной , если в ней участвуют два игрока, и множественной , если число игроков больше двух. Мы будем рас­сматривать только парные игры. В них участвуют два игрока А и В, интересы которых противоположны, а под игрой будем пони­мать ряд действий со стороны А и В.

Игра называется игрой с нулевой суммой, или антагонистиче­ ской , если выигрыш одного из игроков равен проигрышу другого, т.е. сумма выигрышей обеих сторон равна нулю. Для полного задания игры достаточно указать величину одно­го изних. Если обозначить а – выигрыш одного из игроков, b выигрыш другого, то для игры с нулевой суммой b = а , поэтому достаточно рассматривать, например а.

Выбор и осуществление одного из предусмотренных правила­ми действий называется ходом игрока. Ходы могут быть личными и случайными . Личный ход это сознательный выбор игроком одного из возможных действий (например, ход в шахматной игре). Набор возможных вариантов при каждом личном ходе регламентирован правилами игры и зависит от всей совокупности предшествующих ходов с обеих сторон.

Случайный ход это случайно выбранное действие (напри­мер, выбор карты из перетасованной колоды). Чтобы игра была математически определенной, правила игры должны для каждого случайного хода указывать рас­пределение вероятностей возможных исходов.

Некоторые игры могут состоять только из случайных ходов (так называемые чисто азартные игры) или только из личных ходов (шахматы, шашки). Большинство карточных игр принадлежит к играм смешанного типа, т. е. содержит как случайные, так и личные ходы. В дальнейшем мы будем рассматривать только личные ходы игроков.

Игры классифицируются не только по характеру ходов (личные, случайные), но и по характеру и по объему инфор­мации, доступной каждому игроку относительно действий другого. Особый класс игр составляют так называемые «игры с полной информацией». Игрой с полной информацией назы­вается игра, в которой каждый игрок при каждом личном ходе знает результаты всех предыдущих ходов,как личных, так и случайных. Примерами игр с полной информацией могут служить шахматы, шашки, а также известная игра «крестики и нолики». Большинство игр, имеющих практическое значение, не при­надлежит к классу игр с полной информацией, таккак неиз­вестность по поводу действий противника обычно является существенным элементом конфликтных ситуаций.

Одним из основных понятий теории игр является понятие стратегии .

Стратегией игрока называется совокупность правил, опреде­ляющих выбор его действия при каждом личном ходе в зависимо­сти от сложившейся ситуации. Обычно в процессе игры при каж­дом личном ходе игрок делает выбор в зависимости от конкрет­ной ситуации. Однако в принципе возможно, что все решения приняты игроком заранее (в ответ на любую сложившуюся ситуа­цию). Это означает, что игрок выбрал определенную стратегию, которая может быть задана в виде списка правил или программы. (Так можно осуществить игру с помощью ЭВМ). Игра называется конечной , если у каждого игрока имеется конечное число страте­гий, и бесконечной .– в противном случае.

Для того чтобы решить игру, или найти решение игры , следует для каждого игрока выбрать стратегию, которая удовле­творяет условию оптимальности , т.е. один из игроков должен по­лучать максимальный выигрыш, когда второй придерживается своей стратегии, В то же время второй игрок должен иметь минимальный проигрыш , если первый придерживается своей стратегии. Такие стратегии называются оптимальными . Оптимальные стратегии должны также удовлетворять условию устойчивости , т.е. любому из игроков должно быть невыгодно отказаться от своей стратегии в этой игре.

Если игра повторяется достаточно много раз, то игроков может интересовать не выигрыш и проигрыш в каждой конкретной пар­тии, а средний выигрыш (проигрыш) во всех партиях.

Целью теории игр является определение оптимальной стратегии для каждого игрока.

6.2. Платежная матрица. Нижняя и верхняя цена игры

Конечная игра, в которой игрок А имеет т стратегий, а игрок В – п стратегий, называется игрой .

Рассмотрим игру
двух игроковА и В («мы» и «противник»).

Пусть игрок А располагает т личными стратегиями, которые обозначим
. Пусть у игрокаВ имеется n личных стратегий, обозначим их
.

Пусть каждая сторона выбрала определенную стратегию; для нас это будет , для противника. В результате выбора игроками любой пары стратегийи(
) однозначно определяется исход игры, т.е. выигрышигрокаА (положительный или отрицательный) и проигрыш
игрокаВ.

Предположим, что значения известны для любой пары страте­гий (,). Матрица
,
, элементами которой являются выигрыши, соответствующие страте­гиям и , называется платежной матрицей или матрицей игры. Строки этой матрицы соот­ветствуют стратегиям игрока А, а столбцы – стратегиям игрока B . Эти стратегии называются чистыми.

Матрица игры
имеет вид:

Рассмотрим игру
с матрицей

и определим наилучшую среди стратегий
. Выбирая стратегию , игрок А должен рассчитывать, что игрок В ответит на нее той из стратегий , для которой выигрыш для иг­рока А минимален (игрок В стремится "навредить" игроку A ).

Обозначим через наименьший выигрыш игрокаА при вы­боре им стратегии для всех возможных стратегий игрокаВ (наименьшее число в i -й строке платежной матрицы), т.е.

(1)

Среди всех чисел (
) выберем наибольшее:
.

Назовем
нижней ценой нгры, или максимальным выигрышем (максмином). Это гарантированный выигрыш игрока А при любой стратегии игрока В. Следовательно,

. (2)

Стратегия, соответствующая максимину, называется максиминной стратегией . Игрок В заинтересован в том, чтобы уменьшить выигрыш игрока А, выбирая стратегию , он учитывает макси­мально возможный при этом выигрыш для А. Обозначим

. (3)

Среди всех чисел выберем наименьшее

и назо­вем верхней ценой игры илиминимаксным выигрышем (минимаксом). Эго гарантированный проигрыш игрока В . Следова­тельно,

. (4)

Стратегия, соответствующая минимаксу, называется минимаксной стратегией.

Принцип, диктующий игрокам выбор наиболее "осторожных" минимаксной и максиминной стратегий, называется принципом минимакса . Этот принцип следует из разумного предположения, что каждый игрок стремится достичь цели, противоположной цели противника.

Теорема. Нижняя цена игры всегда не превосходит верхней цены игры
.

Если верхняя и нижняя цены игры совпадают, то общее значе­ние верхней и нижней цены игры
называется чистой ценой игры, или ценой игры. Минимакс­ные стратегии, соответствующие цене игры, являются оптимальными стратегиями , а их совокупность – оптимальным решением или решением игры. В этом случае игрок А получает максимальный га­рантированный (не зависящий от поведения игрока В) выигрыш v , а игрок В добивается минимального гарантированного (вне зависи­мости от поведения игрока А) проигрыша v . Говорят, что решение игры обладает устойчивостью , т.е. если один из игроков придержи­вается своей оптимальной стратегии, то для другого не может быть выгодным отклоняться от своей оптимальной стратегии.

Если один из игроков (например А) придерживается своей оптимальной стратегии, а другой игрок (В) будет любым способом отклоняться от своей оптимальной стра­тегии, то для игрока, допустившего отклонение, это никогда не может оказаться выгодным; такое отклонение игрока В может в лучшем случае оставить выигрыш неизменным. а в худшем случае – увеличить его.

Наоборот, если В придерживается своей оптимальной стратегии, а А отклоняется от своей, то это ни в коем случае не может быть выгодным для А.

Пара чистых стратегий и дает оптимальное решение игры тогда и только тогда, когда соответствующий ей элемент явля­ется одновременно наибольшим в своем столбце и наименьшим в своей строке. Такая ситуация, если она существует, называется седловой точкой. В геометрии точку на поверхности, обладающую свойством: одновременный минимум по одной координате и максимум по другой, называют седловой точкой, по аналогии этот термин применяют в теории игр.

Игра, для которой
,
называется игрой с седловой точкой. Элемент , обладающий этим свойством, седловой точкой матрицы.

Итак, для каждой игры с седловой точкой существует решение, определяющее пару оптимальных стратегий обеих сторон, отличающуюся следующими свойствами.

1) Если обе стороны придерживаются своих оптимальных стратегий, то средний выигрыш равен чистой цене игры v , одновременно являющейся ее нижней и верхней ценой.

2) Если одна из сторон придерживается своей оптимальной стратегии, а другая отклоняется от своей, то от этого отклоняющаяся сторона может только потерять и ни в коем случае не может увеличить свой выигрыш.

Класс игр, имеющих седловую точку, представляет боль­шой интерес как с теоретической, так и с практической точки зрения.

В теории игр доказывается, что, в частности, каждая игра с полной информацией имеет седловую точку, и, сле­довательно, каждая такая игра имеет решение, т. е. суще­ствует пара оптимальных стратегий той и другой стороны, дающая средний выигрыш, равный цене игры. Если игра с полной информацией состоит только из личных ходов, то при применении каждой стороной своей оптимальной стратегии она должна всегда кончаться вполне определенным исходом, а именно, выигрышем, в точности равным цене игры.

Рассмотрим парную конечную игру. Пусть игрок А располагает m личными стратегиями, которые обозначим А 1 , А 2 , …,А m . Пусть у игрока В имеется n личных стратегий, обозначим их В 1 2 , …, В n . Говорят, что игра имен размерность mn . В результате выбора игроками любой пары стратегий

A i и B i (I = 1, 2, …, m ; j = 1, 2, …, n )

однозначно определяется исход игры, т. е. выигрыш a ij игрока A (положительный или отрицательный) и проигрыш (- a ij ) игрока В . Предположим, что значения a ij известны для любой пары стратегий (Ai, Bj ). Матрица Р = (а ij ), i = 1, 2, …, m ; j = 1, 2, …, n , элементами которой являются выигрыши, соответствующие стратегиям A i и B j , называется платёжной матрицей или матрицей игры . Общий вид такой матрицы представлен в табл. 1. Строки этой таблицы соответствуют стратегиям игрока А , а столбцы - стратегиям игрока В .

Составим платёжную матрицу для следующей игры.

Таблица 1

А j B i

a 1n

a 2n

a m 1

a mn

1. Игра «поиск».

Игрок А может спрятаться в одном из убежищ (I и II); игрок В ищет игрока А , и если найдёт, то получает штраф 1 ден. ед. от А , в противном случае платит игроку А 1 ден. ед. Необходимо построить платёжную матрицу игры.

Решение. Для составления платёжной матрицы следует проанализировать поведение каждого из игроков. Игрок А может спрятаться в убежище I - обозначим эту стратегию через А 1 или в убежище II - стратегия А 2 .

Игрок В может искать первого игрока в убежище I - стратегия В 1 , либо в убежище II - стратегия В 2 . Если игрок А находится в убежище I и там его обнаруживает игрок В , т.е. осуществляется пара стратегий (А 1 , В 1), то игрок А платит штраф, т.е. а 11 = -1. аналогично получаем а 22 = -1 (А 2 , В 2). Очевидно, что стратегии (А 1 , В 1) и (А 2 , В 2) дают игроку А выигрыш 1, поэтому а 12 = а 21 = 1.

Начало условия задачи; - окончание решения задачи.

Таким образом, для игры «поиск» размера 2 2 получаем платежную матрицу

Рассмотрим игру m n с матрицей Р = (а ij ), i = 1, 2, …, m ; j = 1, 2, …, n и определим наилучшую среди стратегий А 1 , А 2 , …, А m . Выбирая стратегию A i , игрок А должен рассчитывать, что игрок В ответит на неё той из стратегий B j , для которой выигрыш для игрока А минимален (игрок В стремится «навредить» игроку А ).

Обозначим через а i наименьший выигрыш игрока А при выборе им стратегии A i для всех возможных стратегий игрока В (наименьшее число в i -ой строке платёжной матрицы), т.е.

а ij = i . (1.1)

среди всех чисел? i (i = 1, 2, …, m ) выберем наибольшее: ? = ? i . Назовем? нижней ценой игры , или максимальным выигрышем (максимином). Это гарантированный выигрыш игрока А при любой стратегии игрока В. Следовательно,

? = a ij . (1.2)

Стратегия, соответствующая максимину, называется максиминной стратегией. Игрок В заинтересован в том, чтобы уменьшить выигрыш игрока А ; выбирая стратегию B j , он учитывает максимально возможный при этом выигрыш для А . Обозначим

? j = a ij (1.3)

Среди всех чисел? j выберем наименьшее? = ? j и назовем? верхней ценой игры или минимаксным выигрышем (минимаксом). Это гарантированный проигрыш игрока В . Следовательно,

? = a ij . (1.4)

Стратегия, соответствующая минимаксу, называется минимаксной стратегией .

Принцип, диктующий игрокам выбор наиболее «осторожных» минимаксной и максиминной стратегий, называется принципом минимакса. Этот принцип следует из разумного предположения, что каждый игрок стремится достичь цели, противоположной цели противника. Определим нижнюю и верхнюю цены игры и соответствующие стратегии в задаче 1. Рассмотрим платёжную матрицу

из задачи 1. При выборе стратегии А 1 (первая строка матрицы) минимальный выигрыш равен? 1 = min(-1;1) = -1 и соответствует стратегии? 1 игрока В . При выборе стратегии А 2 (вторая строка матрицы) минимальный выигрыш равен? 2 = min(1;-1) = -1, он достигается при стратегии В 2 .

Гарантируя себе максимальный выигрыш при любой стратегии игрока В , т.е. нижнюю цену игры? = max(? 1 , ? 2) = max(-1;-1) = -1, игрок А может выбирать любую стратегию: А 1 или А 2 , т.е. любая его стратегия является максиминной.

Выбирая стратегию В 1 (столбец 1), игрок В понимает, что игрок А ответит стратегией А 2 , чтобы максимизировать свой выигрыш (проигрыш В ). Следовательно, максимальный проигрыш игрока В при выборе им стратегии В 1 равен? 1 = max(-1;1) = 1.

Аналогично максимальный проигрыш игрока В (выигрыш А ) при выборе им стратегии В 2 (столбец 2) равен? 2 = max(1;-1) = 1.

Таким образом, при любой стратегии игрока А гарантированный минимальный проигрыш игрока В равен? = min (? 1 ; ? 2) = min(1;1) = 1 - верхней цене игры.

Любая стратегия игрока В является минимаксной. Дополнив табл. 1 строкой? j и столбцом? i , получим табл. 2. На пресечении дополнительных строки и столбца будем записывать верхнюю и нижнюю цены игр.

Таблица 2.

А j B i

? i

? j

В задаче 1 , рассмотренной выше, верхняя и нижняя цены игры различны? ? ?.

Если верхняя и нижняя цены игры совпадают, то общее значение верхней и нижней цены игры? = ? = v называется чистой ценой игры , или ценой игры . Минимаксные стратегии, соответствующие цене игры, являются оптимальными стратегиями , а их совокупность - оптимальным решением , или решением игры. В этом случае игрок А получает максимальный гарантированный (не зависящий от поведения игрока В ) выигрыш v, а игрок В добивается минимального гарантированного (вне зависимости от поведения игрока А ) проигрыша v. Говорят, что решение игры обладает устойчивостью, т.е. если один из игроков придерживается своей оптимальной стратегии, то для другого не может быть выгодным отклонятся от своей оптимальной стратегии.

Пара чистых стратегий А j и B i даёт оптимальное решение игры тогда и только тогда, когда соответствующий элемент a ij является одновременно наибольшим в своём столбце и наименьшим в своей строке. Такая ситуация, если оан существует, называется седловой точкой (по аналогии с поверхностью седла, которая искривляется вверх в одном направлении и вниз - в другом).

Обозначим А * и B * - пару чистых стратегий, на которых достигается решение игры в задаче с седловой точкой. Введём функцию выигрыша первого игрока на каждой паре стратегий: Р (А i , B j ) = a ij . Тогда из условия оптимальности в седловой точке выполняется двойное неравенство: Р (А i , B *) ? Р (А * , B * ) ? Р (А * , B j ), которое справедливо для всех i = 1, …, m ; j = 1, …, n . действительно, выбор стратегии А * первым игроком при оптимальной стратегии B * второго игрока максимизирует минимальный возможный выигрыш: Р (А * , B * ) ? Р (А * , B ).

2. определить нижнюю и верхнюю цену игры, заданной платёжной матрицей

Р = 0,9 0,7 0,8

Таблица 3.

А i B j

Имеет ли игра седловую точку?

Решение. Все расчёты удобно проводить в таблице, к которой, кроме матрицы Р, введены столбец? i и строка? j (табл. 3). Анализируя строки матрицы (стратегии игрока А ), заполняем столбец? i : ? 1 = 0,5, ? 2 = 0,7, ? 3 = 0,6 - минимальные числа в строках 1, 2, 3. Аналогично? 1 = 0,9, ? 2 = 0,7, ? 3 = 0,8 - максимальные числа в столбцах 1, 2, 3 соответственно.

Нижняя цена игры? = ? i = max (0,5; 0,7; 0,6) = 0,7 (наибольшее число в столбце ? i ) и верхняя цена игры? = ? j = min(0,9; 0,7; 0,8) = 0,7 (наименьшее число в строке? j ). Эти значения равны, т.е. ? = ?, и достигаются на одной и той же паре стратегий (А 2 , В 2). Следовательно, игра имеет седловую точку (А 2 , В 2) и цена игры = 0,7.

Теория игр представляет собой математическую дисциплину, предметом исследования которой являются методы принятия решения в конфликтных ситуациях.

Ситуация называется конфликтной , если в ней сталкиваются интересы нескольких (обычно двух) лиц, преследующих противоположные цели. Каждая из сторон может проводить ряд мероприятий для достижения своих целей, причем успех одной стороны означает неудачу другой.

В экономике конфликтные ситуации встречаются очень часто (взаимоотношения между поставщиком и потребителем, покупателем и продавцом, банкиром и клиентом). Конфликтные ситуации встречаются и во многих других областях.

Конфликтная ситуация порождается различием интересов партнеров и стремлением каждого из них принимать оптимальные решения, которые реализуют поставленные цели в наибольшей степени. При это каждому приходится считаться не только со своими целями, но и с целями партнера, и учитывать неизвестные заранее решения, которые партнеры будут принимать.

Обычно конфликтные ситуации трудны для непосредственного анализа благодаря множеству второстепенных приходящих факторов. Для того чтобы сделать возможным математический анализ конфликтной ситуации, ее необходимо упростить, учтя только основные факторы. Упрощенная формализованная модель конфликтной ситуации называется игрой , стороны, участвующие в конфликте, - игроками , а исход конфликта - выигрышем. Как правило, выигрыш (или проигрыш) может быть задан количественно; например, можно оценить проигрыш нулем, выигрыш - единицей, а ничью - 1/2.

Игра представляет собой совокупность правил , описывающих поведение игроков. Каждый случай разыгрывания игры некоторым конкретным образом от начала до конца представляет собой партию игры. Выбор и осуществление одного из предусмотренных правилами действий называется ходом игрока. Ходы могут быть личными и случайными. Личный ход - это сознательный выбор игроком одного из возможных действий (например, ход в шахматной игре).Случайный ход - это также выбор одного из множества вариантов, но здесь вариант выбирается не игроком, а некоторым механизмом случайного выбора (бросание монет, выбор карты из перетасованной колоды).

Стратегией игроканазывается совокупность правил, определяющих выбор его действий при каждом личном ходе в зависимости от сложившейся ситуации.



Если игра состоит только из личных ходов, то исход игры определен, если каждый из игроков выбрал свою стратегию. Однако если в игре имеются случайные ходы, то игра будет носить вероятностный характер и выбор стратегий игроков еще не определит окончательно исход игры.

Для того чтобы решить игру, или найти решение игры, следует для каждого игрока выбрать стратегию, которая удовлетворяет условию оптимальности, т.е. один из игроков должен получать максимальный выигрыш, когда второй придерживается своей стратегии. В то же время второй игрок должен иметьминимальный проигрыш , если первый придерживается своей стратегии. Такие стратегии называются оптимальными. Оптимальные стратегии должны удовлетворять условию устойчивости, т.е. любому из игроков должно быть невыгодно отказаться от своей стратегии в этой игре.

Целью теории игр является определение оптимальной стратегии для каждого игрока .

Рассмотрим парную конечную игру. Пусть игрок А располагает m личными стратегиями, которые обозначим A 1 , A 2 , ..., A m . Пусть у игрока В имеется n личных стратегий, обозначим их B 1 , B 2 , ..., B m . Говорят, что игра имеет размерность m × n . В результате выбора игроками любой пары стратегий



A i и B j (i = 1, 2, ..., m; j = 1, 2, ..., n)

однозначно определяется исход игры, т.е. выигрыш a ij игрока А (положительный или отрицательный) и проигрыш (- a ij ) игрока В . Предположим, что значения о,у известны для любой пары стратегий (A i ,B j ). Матрица , элементами которой являются выигрыши, соответствующие стратегиям A i и B j , называется платежной матрицей или матрицей игры . Общий вид такой матрицы представлен в таблице 3.1.

Таблица 3.1

Строки этой таблицы соответствуют стратегиям игрока А , а столбцы - стратегиям игрока В . Составим платежную матрицу для следующей игры.

Рассмотрим игру m × n с матрицей P = (a ij), i = 1, 2, ..., m; j = 1, 2, ..., n и определим наилучшую среди стратегий A 1 , A 2 , ..., A m . Выбирая стратегию A i игрок А должен рассчитывать, что игрок В ответит на нее той из стратегий B j , для которой выигрыш для игрока А минимален (игрок В стремится "навредить" игроку А ). Обозначим через α i , наименьший выигрыш игрока А при выборе им стратегии A i для всех возможных стратегий игрока В (наименьшее число в i -й строке платежной матрицы), т.е.

Стратегия, соответствующая максимину, называется максиминной стратегией . Игрок В заинтересован в том, чтобы уменьшить выигрыш игрока А ; выбирая стратегию B j , он учитывает максимально возможный при этом выигрыш для А . Обозначим

Стратегия, соответствующая минимаксу, называется минимаксной стратегией. Принцип, диктующий игрокам выбор наиболее "осторожных" минимаксной и максиминной стратегий, называется принципом минимакса . Этот принцип следует из разумного предположения, что каждый игрок стремится достичь цели, противоположной цели противника. Определим нижнюю и верхнюю цены игры и соответствующие стратегии в задаче.

Если верхняя и нижняя цены игры совпадают, то общее значение верхней и нижней цены игры α = β = v называется чистой ценой игры , или ценой игры . Минимаксные стратегии, соответствующие цене игры, являютсяоптимальными стратегиями , а их совокупность - оптимальным решением , или решением игры . В этом случае игрок А получает максимальный гарантированный (не зависящий от поведения игрока В ) выигрыш v , а игрок В добивается минимального гарантированного (вне зависимости от поведения игрока А ) проигрыша v . Говорят, что решение игры обладает устойчивостью , т.е. если один из игроков придерживается своей оптимальной стратегии, то для другого не может быть выгодным отклоняться от своей оптимальной стратегии.

Пара чистых стратегий A i и B j дает оптимальное решение игры тогда и только тогда, когда соответствующий ей элемент a ij , является одновременно наибольшим в своем столбце и наименьшим в своей строке. Такая ситуация, если она существует, называется седловой точкой (по аналогии с поверхностью седла, которая искривляется вверх в одном направлении и вниз - в другом).

Основные понятия модели управления запасами.

Как в бизнесе, так и в производстве обычно принято поддерживать разумный запас материальных ресурсов или комплектующих для обеспечения непрерывности производственного процесса. Традиционно запас рассматривается как неизбежные издержки, когда слишком низкий его уровень приводит к дорогостоящим остановкам производства, а слишком высокий – к «омертвлению» капитала. Задача управления запасами – определить уровень запаса, который уравновешивает два упомянутых крайних случая.

Рассмотрим основные характеристики моделей управления запасами.

Спрос . Спрос на запасаемый продукт может быть детерминированным (в простейшем случае - постоянным во времени) или случайным. Случайность спроса описывается либо случайным моментом спроса, либо случайным объемом спроса в детерминированные или случайные моменты времени.

Пополнение склада. Пополнение склада может осуществляется либо периодически через определенные интервалы времени, либо по мере исчерпания запасов, т.е. снижения их до некоторого уровня.

Объем заказа. При периодическом пополнении и случайном исчерпании запасов объем заказа может зависит от того состояния, которое наблюдается в момент подачи заказа. Заказ обычно подается на одну и ту же величину при достижении запасом заданного уровня - так называемой точки заказа.

Время доставки. В идеализированных моделях управления запасами предполагается, что заказанное пополнение доставляется на слад мгновенно. В других моделях рассматривается задержка поставок на фиксированный или случайный интервал времени.

Стоимость поставки. Как правило, предполагается, что стоимость каждой поставки слагается их двух компонент - разовых затрат, не зависящих от объема заказываемой партии, и затрат, зависящих (чаще всего линейно) от объема партии.

Издержки хранения. В большинстве моделей управления запасами считают объем слада практически неограниченным, а в качестве контролирующей величины служит объем хранимых запасов. При этом полагают, что хранение каждой единицы запаса в единицу времени взимается определенная плата.

Штраф за дефицит. Любой склад создается для того, чтобы предотвратить дефицит определенного типа изделий в обслуживаемой системе. Отсутствие запаса в нужный момент приводит к убыткам, связанным с простоем оборудования, неритмичностью производства и т.п. Эти убытки называют штрафом за дефицит.

Номенклатура запаса. В простейших случаях предполагается, что на складе храниться запас однотипных изделий или однородного продукта. В более сложных случаях рассматривается многономенклатурный запас.

Структура складской системы. Наиболее полно разработаны математические модели одиночного слада. Однако на практике встречаются и более сложные структуры: иерархические системы сладов с различными периодами пополнения и временем доставки заказов, с возможностью обмена запасами между складами одного уровня иерархии и т.п.

В качестве критерия эффективности принятой стратегии управления запасами выступает функция затрат (издержек), представляющая суммарные затраты на поставку запасаемого продукта, его хранение и затраты на штрафы.

Управление запасами состоит в отыскании такой стратегии пополнения и расхода запасами, при котором функция затрат принимает минимальное значение.

Пусть фукнции , и выражают соответственно:

Пополнение запасов,

Расход запасов,

Спрос на запасаемый продукт

за промежуток времени .

В моделях управления запасами обычно используются производные этих функций по времени , , ,называемые соответственно,

Стратегией игрока называется план, по которому он совершает выбор в любой возможной ситуации и при любой возможной фактической информации. Естественно, что игрок принимает решения по ходу игры. Однако теоретически можно предположить, что все эти решения приняты игроком заранее. Тогда совокупность этих решений составляет его стратегию. В зависимости от числа возможных стратегий игры делятся на конечные и бесконечные. Задачей теории игр является выработка рекомендаций для игроков, т. е. определение для них оптимальной стратегии. Оптимальной называется стратегия, которая при многократном повторении игры обеспечивает данному игроку максимально возможный средней выигрыш.

Простейший вид стратегической игры - игра двух лиц с нулевой суммой (сумма выигрышей сторон равна нулю). Игра состоит из двух ходов: игрок А выбирает одну из своих возможных стратегий Ai (i = 1, 2, m), а игрок В выбирает стратегию Вj (j = 1, 2, ., n), причем каждый выбор производится при полном незнании выбору другого игрока.

Цель игрока А - максимизировать функцию φ (Ai, Bj), в свою очередь, цель игрока В - минимизировать эту же функцию. Каждый из игроков может выбирать одну из переменных, от которых зависит значение функции. Если игрок А выбирает некоторую из стратегий Ai, то это само по себе не может влиять да значение функции φ (Ai, Bj).

Влияние Ai, на величину значения φ (Ai, Bj) является неопределенным; определенность имеет место только после выбора, исходя из принципа минимизации φ (Ai, Bj), другим игроком переменной Bj. При этом Bj определяется другим игроком. Пусть φ (Ai, Bj)= aij. Составим матрицу А:

Строки матрицы соответствуют стратегиям Ai, столбцы - стратегиям Bj. Матрица А называется платежной или матрицей игры. Элемент aij матрицы - выигрыш игрока А, если он выбрал стратегию Ai, а игрок В выбрал стратегию Bj.

Пусть игрок А выбирает некоторую стратегию Ai ; тогда в наихудшем случае (например, если выбор станет известным игроку В) он получит выигрыш, равный min aij. Предвидя такую возможность, игрок А должен выбрать такую стратегию, чтобы максимизировать свой минимальный выигрыш a:

а = max min aij

Величина а - гарантированный выигрыш игрока А - называется нижней ценой игры. Стратегия Аi0, обеспечивающая получение а, называется максиминной.

Игрок В, выбирая стратегию, исходит из следующего принципа: при выборе некоторой стратегии Вj его проигрыш не превысит максимального из значений элементов j-го столбца матрицы, т.е. меньше или равен max aij

Рассматривая множество max aij для различных значений j, игрок В, естественно выберет такое значение j, при котором его максимальный проигрыш β минимизируется:

β = min miax aij

Величина β называется верхней ценой игры, а соответствующая выигрышу β стратегия Вj0 - минимаксной.

Фактический выигрыш игрока А при разумных действиях партнеров ограничен нижней и верхней ценой игры. Если же эти выражения равны, т.е.