Чистые стратегии в теории игр. Смешанные стратегии. Чистые стратегии игрока. Оптимальные смешанные стратегии. Математические методы и модели в экономике

Среди конечных игр, имеющих практическое значение, сравнительно редко встречаются игры с седловой точкой; более типичным является случай» когда нижняя и верхняя цена - игры различны. Анализируя матрицы таких игр, мы пришли к заключению, что если каждому игроку предоставлен выбор

одной - единственной стратегии., то в расчете на разумно действующего противника этот выбор должен определяться принципом минимакса. Придерживаясь своей максиминной стратегии, мы при любом поведении противника заведомо гарантируем себе выигрыш, равный нижней цене -игры а. Возникает естественный вопрос: нельзя ли гарантировать себе средний выигрыш, больший а, если применять не одну-единственную «чистую» стратегию, а чередовать случайным образом несколько стратегий?

Такие комбинированные стратегии, состоящие в применении нескольких чистых стратегий, чередующихся по случайному закону с определенным соотношением частот, в теории игр называются смешанными стратегиями.

Очевидно, каждая чистая стратегия является частным случаем смешанной, в которой все стратегии, кроме одной, применяются с нулевыми частотами, а данная - с частотой 1.

Оказывается, что, применяя не только чистые, но и смешанные стратегии, можно для каждой конечной игры получить решение, т. е. пару таких (в общем случае смешанных) стратегий, что при применении их обоими игроками выигрыш будет равен цене игры, а при любом одностороннем отклонении от оптимальной стратегии выигрыш может измениться только в сторону, невыгодную для отклоняющегося.

Высказанное утверждение составляет содержание так называемой основной теоремы теории игр. Эта теорема была впервые доказана фон Нейманом в 1928 г. Известные доказательства теоремы сравнительно сложны; поэтому приведем только ее формулировку.

Каждая конечная игра имеет, по крайней мере, одно решение (возможно, в области смешанных стратегий).

Выигрыш, получаемый в результате решения, называется ценой игры. Из основной теоремы следует, что каждая конечная игра имеет цену. Очевидно, что цена игры v всегда лежит между нижней ценой игры а и верхней ценой игры :

Действительно, а есть максимальный гарантированный выигрыш, который мы можем себе обеспечить, применяя только свои чистые стратегии. Так как смешанные стратегии включают в себя в качестве частного случая и все чистые, то, допуская, кроме чистых, еще и смешанные

стратегии, мы, во всяком случае, не ухудшаем своих возможностей; следовательно,

Аналогично, рассматривая возможности противника, покажем, что

откуда следует доказываемое неравенство (3.1).

Введем специальное обозначение для смешанных стратегий. Если, например, наша смешанная стратегия состоит в применении стратегий АЛ, с частотами причем будем обозначать эту стратегию

Аналогично смешанную стратегию противника будем обозначать:

где - частоты, в которых смешиваются стратегии

Предположим, что нами найдено решение игры, состоящее из двух оптимальных смешанных стратегий S, S. В общем случае не все чистые стратегии, доступные данному игроку, входят в его оптимальную смешанную стратегию, а только некоторые. Будем называть стратегии, входящие в оптимальную смешанную стратегию игрока, его «полезными» стратегиями.

Оказывается, что решение игры обладает еще одним замечательным свойством: если один из игроков придерживается своей оптимальной смешанной стратегии 5 (5). то выигрыш остается неизменным и равным цене игры v, независимо от того, что делает другой игрок, если он. только не выходит за пределы своих «полезных» стратегий. Он, например, может пользоваться любой из своих «полезных» стратегий в чистом виде, а также может смешивать их в любых пропорциях.

Докажем это утверждение. Пусть имеется решение игры . Для конкретнрсти будем считать, что оптимальная смешанная стратегия состоит из смеси трех

«полезных» стратегий соответственно состоит из смеси трех «полезных» стратегий

причем Утверждается что если мы будем придерживаться стратегии S, то противник может применять стратегии в любых пропорциях, а выигрыш останется неизменным и по-прежнему будет равен цене игры

5. ТЕОРИЯ ИГР И СТАТИСТИЧЕСКИХ РЕШЕНИЙ

5.1. Матричная игра с нулевой суммой

Экономико-математическое моделирование осуществляется в условиях:

Определенности;

Неопределенности.

Моделирование в условиях определенности предполагает наличие всех необходимых для этого исходных нормативных данных (матричное моделирование, сетевое планирование и управление).

Моделирование в условиях риска проводится при стохастической неопределенности, когда значения некоторых исходных данных случайны и известны законы распределения вероятностей этих случайных величин (регрессионный анализ, теория массового обслуживания).

Моделирование в условиях неопределенности соответствует полному отсутствию некоторых необходимых для этого данных (теория игр).

Математические модели принятия оптимальных решений в конфликтных ситуациях строятся в условиях неопределенности.

В теории игр оперируют следующими основными понятиями:

Стратегия;

Функция выигрыша.

Ходом будем называть выбор и осуществление игроком одного из предусмотренных правилами игры действий.

Стратегия - это технология выбора варианта действий при каждом ходе в зависимости от сложившейся ситуации.

Функция выигрыша служит для определения величины платежа проигравшего игрока выигравшему.

В матричной игре функция выигрыша представляется в виде платежной матрицы :

где - величина платежа игроку I, выбравшему ход , от игрока II, выбравшего ход .

В такой парной игре значения функций выигрыша обоих игроков в каждой ситуации равны по величине и противоположны по знаку, т. е. и такую игру называют с нулевой суммой .

Процесс "игры в матричную игру" представляется следующим образом:

Задается платежная матрица ;

Игрок I независимо от игрока II выбирает одну из строк этой матрицы, например, -ую;

Игрок II независимо от игрока I выбирает один из столбцов этой матрицы, например, - ый;

Элемент матрицы определяет, сколько получит игрок I от игрока II. Разумеется, если , то речь идет о фактическом проигрыше игрока I.

Антагонистическую парную игру с платежной матрицей будем называть игрой .

Пример

Рассмотрим игру .

Задана платежная матрица:

.

Пусть игрок I независимо от игрока II выбирает 3-ю строку этой матрицы, а игрок II независимо от игрока I выбирает 2-ой столбец этой матрицы:

Тогда игрок I получит 9 единиц от игрока II.

5.2. Оптимальная чистая стратегия в матричной игре

Оптимальной стратегией называется такая стратегия игрока I, при которой он не уменьшит своего выигрыша при любом выборе стратегии игроком II, и такая стратегия игрока II, при которой он не увеличит своего проигрыша при любом выборе стратегии игроком I.

Выбирая в качестве хода -ую строку платежной матрицы, игрок I обеспечивает себе выигрыш не менее величины в наихудшем случае, когда игрок II будет стараться минимизировать эту величину. Поэтому игрок I выберет такую -ую строку, которая обеспечит ему максимальный выигрыш:

.

Игрок II рассуждает аналогично и может наверняка обеспечить себе минимальный проигрыш:

.

Всегда справедливо неравенство:

Величину называют нижней ценой игры .

Величину называют верхней ценой игры .

Оптимальные стратегии и называются чистыми , если для них выполняются равенства:

,

.

Величину называют чистой ценой игры , если .

Оптимальные чистые стратегии и образуют седловую точку платежной матрицы .

Для седловой точки выполняются условия:

т. е. элемент является наименьшим в строке и наибольшим в столбце.

Таким образом, если платежная матрица имеет седловую точку , то можно найти оптимальные чистые стратегии игроков.

Чистая стратегия игрока I может быть представлена упорядоченным набором чисел (вектором), в котором все числа равны нулю, кроме числа, стоящего на - ом месте, которое равно единице.

Чистая стратегия игрока II может быть представлена упорядоченным набором чисел (вектором), в котором все числа равны нулю, кроме числа, стоящего на - ом месте, которое равно единице.

Пример

.

Выбирая в качестве хода какую-нибудь строку платежной матрицы, игрок I обеспечивает себе выигрыш в наихудшем случае не менее величины в столбце, обозначенном :

Поэтому игрок I выберет 2-ую строку платежной матрицы, обеспечивающую ему максимальный выигрыш независимо от хода игрока II, который будет стараться минимизировать эту величину:

Игрок II рассуждает аналогично и выберет в качестве хода 1-ый столбец:

Таким образом, имеется седловая точка платежной матрицы:

соответствующая оптимальной чистой стратегии для игрока I и для игрока II, при которой игрок I не уменьшит своего выигрыша при любом изменении стратегии игроком II и игрок II не увеличит своего проигрыша при любом изменении стратегии игроком I.

5.3. Оптимальная смешанная стратегия в матричной игре

Если платежная матрица не имеет седловой точки, то любому игроку нерационально использовать одну чистую стратегию. Выгоднее использовать "вероятностные смеси" чистых стратегий. Тогда в качестве оптимальных определяются уже смешанные стратегии.

Смешанная стратегия игрока характеризуется распределением вероятности случайного события, заключающегося в выборе этим игроком хода.

Смешанной стратегией игрока I называют такой упорядоченный набор чисел (вектор), который удовлетворяет двум условиям:

1) для , т. е. вероятность выбора каждой строки платежной матрицы неотрицательна;

2) , т. е. выбор каждой из строк платежной матрицы в совокупности представляет полную группу событий.

Смешенной стратегией игрока II будет упорядоченный набор чисел (вектор), удовлетворяющий условиям:

Величина платежа игроку I, выбравшему смешанную стратегию

от игрока II, выбравшему смешанную стратегию

,

представляет собой среднюю величину

.

Оптимальными называют смешанные стратегии

и ,

если для любых произвольных смешанных стратегий и выполняется условие:

т. е. при оптимальной смешанной стратегии выигрыш игрока I наибольший, а проигрыш игрока II наименьший.

Если в платежной матрице нет седловой точки, то

,

т. е. существует положительная разность (нераспределенная разность )

- ³ 0,

и игрокам нужно искать дополнительные возможности для уверенного получения в свою пользу большей доли этой разности.

Пример

Рассмотрим игру , заданную платежной матрицей:

.

Определим, есть ли седловая точка:

, .

Оказывается, что в платежной матрице нет седловой точки и нераспределенная разность равна :

.

5.4. Отыскание оптимальных смешанных стратегий

для игр 2×2

Определение оптимальных смешанных стратегий для платежной матрицы размерностью осуществляется методом нахождения точек оптимума функции двух переменных.

Пусть вероятность выбора игроком I первой строки платежной матрицы

равна . Тогда вероятность выбора второй строки равна .

Пусть вероятность выбора игроком II первого столбца равна . Тогда вероятность выбора второго столбца равно .

Величина платежа игроку I игроком II равна:

Экстремальная величина выигрыша игрока I и проигрыша игрока II соответствует условиям:

;

.

Таким образом, оптимальные смешанные стратегии игроков I и II соответственно равны:

5.5. Геометрическое решение игр 2× n

При увеличении размерности платежной матрицы с до уже нельзя определение оптимальных смешанных стратегий свести к нахождению оптимума функции двух переменных. Однако учитывая то, что один из игроков имеет только две стратегии, можно использовать геометрическое решение.

Основные этапы нахождения решения игры сводятся к следующему.

На плоскости введем систему координат. На оси отложим отрезок . Из левого и правого концов этого отрезка проведем перпендикуляры.


Левый и правый концы единичного отрезка соответствуют двум стратегиям и , имеющимся у игрока I. На проведенных перпендикулярах будем откладывать выигрыши этого игрока. Например, для платежной матрицы


такими выигрышами игрока I при выборе стратегии будут и , а при выборе стратегии будут и .

Соединим отрезками прямой точки выигрыша игрока I, соответствующие стратегиям игрока II. Тогда образованная ломанная линия, ограничивающая график снизу, определяет нижнюю границу выигрыша игрока I.



Находим оптимальную смешанную стратегию игрока I

,

которая соответствует точке на нижней границе выигрыша игрока I с максимальной ординатой.

Обратим внимание на то, что в рассматриваемом примере, пользуясь только двумя стратегиями и , соответствующими прямым, пересекающимся в найденной точке на нижней границе выигрыша игрока I, игрок II может воспрепятствовать игроку I получить больший выигрыш.

Таким образом, игра сводится к игре и оптимальной смешанной стратегией игрока II в рассматриваемом примере будет

,

где вероятность находится так же, как в игре :

5.6. Решение игр m × n

Если матричная игра не имеет решения в чистых стратегиях (т. е. нет седловой точки) и из-за большой размерности платежной матрицы не может быть решена графически, то для получения решения используют метод линейного программирования .

Пусть задана платежная матрица размерности :

.

Необходимо найти вероятности , с которыми игрок I должен выбирать свои ходы для того, чтобы данная смешанная стратегия гарантировала ему выигрыш не менее величины независимо от выбора ходов игроком II.

Для каждого выбранного хода игроком II выигрыш игрока I определяется зависимостями:

Разделим обе части неравенств на и введем новые обозначения:

Равенство

Примет вид:

Поскольку игрок I стремится максимизировать выигрыш , то обратную величину нужно минимизировать. Тогда задача линейного программирования для игрока I примет вид:

при ограничениях

Аналогично строится задача для игрока II как двойственная:

при ограничениях

Решая задачи симплекс-методом, получаем:

,

5.7. Особенности решения матричных игр

Прежде, чем решать задачу по отысканию оптимальных стратегий, следует проверить два условия:

Можно ли упростить платежную матрицу;

Имеет ли платежная матрица седловую точку.

Рассмотрим возможность упрощения платежной матрицы:

В связи с тем, что игрок I стремится получить наибольший выигрыш, то из платежной матрицы можно вычеркнуть - ую строку, т. к. он никогда не воспользуется этим ходом, если выполняется следующее соотношение с любой другой - ой строкой:

Аналогично, стремясь к наименьшему проигрышу, игрок II никогда не выберет в качестве хода - ый столбец в платежной матрице и этот столбец можно вычеркнуть, если выполняется следующее соотношение с любым другим - ым столбцом:

Наиболее простым решением игры является наличие в упрощенной платежной матрице седловой точки, которая отвечает следующему условию (по определению):

Пример

Дана платежная матрица:

.

Упрощение платежной матрицы:

Наличие седловой точки:

5.8. Игра с природой

В отличие от задач теории игр в задачах теории статистических решений неопределенная ситуация не имеет антагонистической конфликтной окраски и зависит от объективной действительности, которую принято называть "природой" .

В матричных играх с природой в качестве игрока II выступает совокупность неопределенных факторов, влияющих на эффективность принимаемых решений.

Матричные игры с природой отличаются от обычных матричных игр только тем, что при выборе оптимальной стратегии игроком I уже нельзя ориентироваться на то, что игрок II будет стремиться минимизировать свой проигрыш. Поэтому наряду с платежной матрицей вводится матрица рисков :

гдe - величина риска игрока I при использовании хода в условиях, равная разности между выигрышем , который игрок I получил бы, если бы знал, что установится условие , т. е. , и выигрышем , который он получит, не зная при выборе хода , что установится условие .

Таким образом, платежная матрица однозначно преобразуется в матрицу рисков, а обратное преобразование неоднозначно.

Пример

Матрица выигрышей:

.

Матрица рисков:

Возможны две постановки задачи о выборе решения в матричной игре с природой :

Максимизация выигрыша;

Минимизация риска.

Задача принятия решений может быть поставлена для одного из двух условий:

- в условиях риска , когда известна функция распределения вероятностей стратегий природы, например, случайной величины появления каждой из предполагаемых конкретных экономических ситуаций;

- в условиях неопределенности , когда такая функция распределения вероятностей неизвестна.

5.9. Решение задач теории статистических решений

в условиях риска

При принятии решений в условиях риска игроку I известны вероятности наступления состояний природы.

Тогда игроку I целесообразно выбрать ту стратегию, для которой среднее значение выигрыша, взятое по строке, максимально :

.

При решении этой задачи с матрицей риска получаем такое же решение, соответствующее минимальному среднему риску :

.

5.10. Решение задач теории статистических решений

в условиях неопределенности

При принятии решений в условиях неопределенности можно воспользоваться следующими критериями :

Максиминным критерием Вальда;

Критерием минимального риска Севиджа;

Критерием пессимизма - оптимизма Гурвица;

Принципом недостаточного основания Лапласа.

Рассмотрим максиминный критерий Вальда .

Игра с природой ведется как с разумным агрессивным противником, т. е. осуществляется перестраховочный подход с позиции крайнего пессимизма для платежной матрицы:

.

Рассмотрим критерий минимального риска Севиджа .

Аналогичный предыдущему подход с позиции крайнего пессимизма для матрицы риска:

.

Рассмотрим критерий пессимизма - оптимизма Гурвица .

Предлагается возможность не руководствоваться ни крайним пессимизмом и ни крайним оптимизмом:

где степень пессимизма ;

при - крайний оптимизм,

при - крайний пессимизм.

Рассмотрим принцип недостаточного основания Лапласа .

Полагается, что все состояния природы равновероятны:

,

.

Выводы по пятому разделу

В матричной игре участвуют два игрока и функция выигрыша, служащая для определения величины платежа проигравшего игрока выигравшему, представляется в виде платежной матрицы. Условились, что игрок I - выбирает в качестве хода одну из строк платежной матрицы, а игрок II – один из ее столбцов. Тогда на пересечении выбранных строки и столбца этой матрицы стоит числовая величина платежа игроку I от игрока II (если эта величина положительна, то игрок I действительно выиграл, а если она отрицательна, то выиграл по существу игрок II).

Если в платежной матрице имеется седловая точка, то игроки обладают оптимальными чистыми стратегиями, т. е. для выигрыша каждый из них должен повторять свой один оптимальный ход. Если же седловой точки нет, то для выигрыша каждый из них должен воспользоваться оптимальной смешанной стратегией, т. е. использовать смесь ходов, каждый из которых должен производиться с оптимальной вероятностью.

Отыскание оптимальных смешанных стратегий для игр 2×2 производится вычислением оптимальных вероятностей по известным формулам. С помощью геометрического решения игр 2×n определение оптимальных смешанных стратегий в них сводится к отысканию оптимальных смешанных стратегий для игр 2×2. Для решения игр m×n используют метод линейного программирования для нахождения оптимальных смешанных стратегий в них.

Некоторые платежные матрицы поддаются упрощению, в результате которого уменьшается их размерность за счет удаления строк и столбцов, соответствующих неперспективным ходам.

Если в качестве игрока II выступает совокупность неопределенных факторов, зависящих от объективной действительности и не имеющих антагонистической конфликтной окраски, то такую игру называют игрой с природой, а для ее решения используют задачи теории статистических решений. Тогда наряду с платежной матрицей вводится матрица рисков и возможны две постановки задачи о выборе решения в матричной игре с природой: максимизация выигрыша и минимизация риска.

Решение задач теории статистических решений в условиях риска показывает, что игроку I целесообразно выбрать ту стратегию, для которой среднее значение (математическое ожидание) выигрыша, взятое по строке платежной матрицы, максимально, или (что то же самое) среднее значение (математическое ожидание) риска, взятое по строке матрицы рисков, минимально. При принятии решений в условиях неопределенности используют следующие критерии: максиминный критерий Вальда, критерий минимального риска Севиджа, критерий пессимизма-оптимизма Гурвица, принцип недостаточного основания Лапласа.

Вопросы для самопроверки

Как определяются основные понятия теории игр: ход, стратегия и функция выигрыша?

В виде чего представляется в матричной игре функция выигрыша?

Почему матричную игру называют с нулевой суммой?

Как представляется процесс игры в матричную игру?

Какая игра называется игрой m×n?

Какая стратегия матричной игры называется оптимальной?

Какая оптимальная стратегия матричной игры называется чистой?

Что означает седловая точка платежной матрицы?

Какая оптимальная стратегия матричной игры называется смешенной?

Как представляется смешанная стратегия игрока?

Что представляет собой величина платежа игроку I от игрока II, выбравшим смешанные стратегии?

Какие смешанные стратегии называют оптимальными?

Что означает нераспределенная разность?

С помощью какого метода находятся оптимальные смешанные стратегии для игр 2×2?

Каким образом находятся оптимальные смешанные стратегии для игр 2×n?

С помощью какого метода находятся оптимальные смешанные стратегии для игр m×n?

В чем заключаются особенности решения матричных игр?

Что означает упрощение платежной матрицы и при каких условиях оно может быть осуществлено?

Какую матричную игру легче решать, когда платежная матрица имеет или не имеет седловую точку?

Какие задачи теории игр относятся к задачам теории статистических решений?

Как платежная матрица преобразуется в матрицу рисков?

Какие две постановки задачи о выборе решений возможны в матричной игре с природой?

Для каких двух условий могут быть поставлены задачи принятия решений в матричной игре с природой?

Какую стратегию целесообразно выбрать игроку I при решении задачи теории статистических решений в условиях риска?

Какими критериями принятия решений можно воспользоваться при решении задач теории статистических решений в условиях неопределенности?

Примеры решения задач

1. В платежной матрице указаны величины прибыли предприятия при реализации им разных видов изделий (столбцы) в зависимости от установившегося спроса (строки). Необходимо определить оптимальную стратегию предприятия по выпуску изделий разных видов и соответствующий максимальный (в среднем) доход от их реализации.

Обозначим заданную матрицу через и введем переменные . Будем также использовать матрицу (вектор) . Тогда и , т. е. .

Рассчитывается обратная матрица :

Находятся значения:

.

Рассчитываются вероятности:

Определяется средний доход от реализации:

.

2. Фирма «Фармацевт» - производитель медикаментов и биомедицинских изделий в регионе. Известно, что пик спроса на некоторые лекарственные препараты приходится на летний период (препараты сердечно-сосудистой группы, анальгетики), на другие – на осенний и весенний периоды (антиинфекционные, противокашлевые).

Затраты на 1 усл. ед. продукции за сентябрь-октябрь составили: по первой группе (препараты сердечно-сосудистые и анальгетики) – 20 р.; по второй группе (антиинфекционные, противокашлевые препараты) – 15 р.

По данным наблюдений за несколько последних лет службой маркетинга фирмы установлено, что она может реализовать в течение рассматриваемых двух месяцев в условиях теплой погоды 3050 усл. ед. продукции первой группы и 1100 усл. ед. продукции второй группы; в условиях холодной погоды – 1525 усл. ед. продукции первой группы и 3690 усл. ед. второй группы.

В связи с возможными изменениями погоды ставится задача – определить стратегию фирмы в выпуске продукции, обеспечивающую максимальный доход от реализации при цене продажи 40 р. за 1 усл. ед. продукции первой группы и 30 р. – второй группы.

РЕШЕНИЕ. Фирма располагает двумя стратегиями:

В этом году будет теплая погода;

Погода будет холодная.

Если фирма примет стратегию и в действительности будет теплая погода (стратегия природы ), то выпущенная продукция (3050 усл. ед. препаратов первой группы и 1100 усл. ед. второй группы) будет полностью реализована и доход составит

3050×(40-20)+1100×(30-15)=77500 р.

В условиях прохладной погоды (стратегия природы ) препараты второй группы будут проданы полностью, а первой группы только а количестве 1525 усл. ед. и часть препаратов останется нереализованной. Доход составит

1525×(40-20)+1100×(30-15)-20×()=16500 р.

Аналогично, если форма примет стратегию и в действительности будет холодная погода, то доход составит

1525×(40-20)+3690×(30-15)=85850 р.

При теплой погоде доход составит

1525×(40-20)+1100×(30-15)-() ×15=8150 р.

Рассматривая фирму и погоду в качестве двух игроков, получим платежную матрицу

,

Цена игры лежит в диапазоне

Из платежной матрицы видно, что при всех условиях доход фирмы будет не меньше 16500 р., но если погодные условия совпадут с выбранной стратегией, то доход фирмы может составить 77500 р.

Найдем решение игры.

Обозначим вероятность применения фирмой стратегии через , стратегии - через , причем . Решая игру графически методом, получим , при этом цена игры р.

Оптимальный план производства лекарственных препаратов составит

Таким образом, фирме целесообразно производить в течение сентября и октября 2379 усл. ед. препаратов первой группы и 2239,6 усл. ед. препаратов второй группы, тогда при любой погоде она получит доход не менее 46986 р.

В условиях неопределенности, если не представляется возможным фирме использовать смешанную стратегию (договоры с другими организациями), для определения оптимальной стратегии фирмы используем следующие критерии:

Критерий Вальде:

Критерий Гурвица: для определенности примем , тогда для стратегии фирмы

для стратегии

фирме целесообразно использовать стратегию .

Критерий Сэвиджа. Максимальный элемент в первом столбце – 77500, во втором столбце – 85850.

Элементы матрицы рисков находятся из выражения

,

откуда , ,

Матрица рисков имеет вид

,

целесообразно использовать стратегию или .

Следовательно, фирме целесообразно применять стратегию или .

Отметим, что каждый из рассмотренных критериев не может быть признан вполне удовлетворительным для окончательного выбора решений, однако их совместный анализ позволяет более наглядно представить последствия принятия тех или иных управленческих решений.

При известном распределении вероятностей различных состояний природы критерием принятия решения является максимум математического ожидания выигрыша.

Пусть известно для рассматриваемой задачи, что вероятности теплой и холодной погоды равны и составляют 0,5, тогда оптимальная стратегия фирмы определяется так:

Фирме целесообразно использовать стратегию или .

Задания для самостоятельной работы

1. Предприятие может выпускать три вида продукции (А, Б и В), получая при этом прибыль, зависящую от спроса. Спрос в свою очередь может принимать одно из четырех состояний (I, II, III и IV). В следующей матрице элементы характеризуют прибыль, которую получит предприятие при выпуске -ой продукции и -ом состоянии спроса:

Выбор игроком того или иного действия называется ходом . Ходы бывают личные (игрок сознательно принимает то или иное решение) и случайные (исход игры не зависит от воли игрока). Набор правил, которые определяют, какой ход игроку необходимо сделать, называется стратегией . Стратегии бывают чистыми (неслучайные решения игроков) и смешанными (стратегию можно рассматривать как случайную величину).

Седловая точка

В теории игр С. т. (седловой элемент ) - это наибольший элемент столбца матрицы игры , который одновременно является наименьшим элементом соответствующей строки (в игре двух лиц с нулевой суммой ). В этой точке, следовательно, максимин одного игрока равен минимаксу другого; С. т. есть точка равновесия .

Теорема о минимаксе

Стратегия, соответствующая минимаксу, называется минимаксной стратегией .

Принцип, диктующий игрокам выбор наиболее "осторожных" максиминной и минимаксной стратегий, называется принципом минимакса . Этот принцип следует из разумного предположения, что каждый игрок стремится достичь цели, противоположной цели противника.

Игрок выбирает свои действия, предполагая, что противник будет действовать неблагоприятным образом, т.е. будет стараться "навредить".

Функция потерь

Функция потерь – функция, которая в теории статистических решений характеризует потери при неправильном принятии решений на основе наблюдаемых данных. Если решается задача оценки параметра сигнала на фоне помех, то функция потерь является мерой расхождения между истинным значением оцениваемого параметра и оценкой параметра

Оптимальная Смешанная стратегия игрока - это полный набор примене­ния его чистых стратегий при многократном повторении игры в одних и тех же условиях с заданными вероятностями.

Смешанная стратегия игрока - это полный набор примене­ния его чистых стратегий при многократном повторении игры в одних и тех же условиях с заданными вероятностями.

1. Если все элементы строки не больше соответствующих элементов другой строки, то исходная строка может быть вычеркнута из платежной матрицы. Аналогично для столбцов.

2. Цена игры единственна.

Док-во: допустим, что есть 2 цены игры v и , которые достигаются на паре и соответственно, тогда

3. Если ко всем элементам платежной матрицы прибавить одно и то же число, то оптимальные смешанные стратегии не изменятся, а цена игры увеличится на это число.

Док-во:
, где

4. Если все элементы платежной матрицы умножить на одно и то же число не равное нулю, цена игры умножится на это число, а оптимальные стратегии не изменятся.

Если игра не имеет седловой точки, то возникают затруднения в определении цены игры и оптимальных стратегий игроков. Рассмотрим, например, игру:

В этой игре и . Следовательно, первый игрок может гарантировать себе выигрыш, равный 4, а второй может ограничить свой проигрыш 5. Область между и является как бы ничейной и каждый игрок может попытаться улучшить свой результат за счет этой области. Каковы же должны быть в этом случае оптимальные стратегии игроков?

Если каждый из игроков применяет отмеченную звездочкой стратегию (и ), то выигрыш первого игрока и проигрыш второго будут равны 5. Это невыгодно второму игроку, так как первый выигрывает больше, чем оно может себе гарантировать. Однако если второй игрок каким-либо образом раскроет замысел первого о намерении использовать стратегию , то он может применить стратегию и уменьшить выигрыш первого до 4. Правда, если первый игрок раскроет замысел второго применить стратегию , то, используя стратегию , он увеличит свой выигрыш до 6. Таким образом, возникает ситуация, когда каждый игрок должен хранить в секрете ту стратегию, которую он собирается использовать. Однако, как это сделать? Ведь если партия играется многократно и второй игрок применяет все время стратегию , то первый игрок скоро разгадает замысел второго и, применив стратегию , будет иметь добавочный выигрыш. Очевидно, что второй игрок должен менять стратегию в каждой новой партии, но делать это он должен так, чтобы первый не догадался, какую стратегию применит он в каждом случае.

Для механизма случайного выбора выигрыши и проигрыши игроков будут случайными величинами. Результат игры в этом случае можно оценить средней величиной проигрыша второго игрока. Вернемся к примеру. Так, если второй игрок использует стратегию и случайным образом с вероятностями 0.5; 0.5, то при стратегии первого игрока среднее значение его проигрыша будет:

а при стратегии первого игрока

Следовательно, второй игрок может ограничить свой средний проигрыш значением 4,5 независимо от стратегии, применяемой первым игроком.

Таким образом, в ряде случаев оказывается целесообразным не намечать заранее стратегию, а выбирать ту или иную случайным образом, используя какой-либо механизм случайного выбора. Стратегию, основанную на случайном выборе, называют смешанной стратегией , в отличие от намеченных стратегий, которые называются чистыми стратегиями .

Дадим более строгое определение чистых и смешанных стратегий.



Пусть имеется игра без седловой точки:

Обозначим частоту использования чистой стратегии первого игрока через , (вероятность использования i-ой стратегии). Аналогично обозначим частоту использования чистой стратегии второго игрока через , (вероятность использования j-ой стратегии). Для игры с седловой точкой существует решение в чистых стратегиях . Для игры без седловой точки существует решение в смешанных стратегиях, то есть когда выбор стратегии осуществляется на основании вероятностей. Тогда

Множество чистых стратегий 1-го игрока;

Множество смешанных стратегий 1-го игрока;

Множество чистых стратегий 2-го игрока;

Множество смешанных стратегий 2-го игрока.

Рассмотрим пример: пусть имеется игра

Второй игрок выбирает вероятность . Оценим средний проигрыш второго игрока при применении им стратегий и соответственно.

Описание биматричной игры . Все игры которые были рассмотрены, относились к классу игр с нулевой суммой . Однако ряд конфликтных ситуаций, складывающихся в ходе действий, характерны тем, что выигрыш одной стороны не равен в точности проигрышу другой. Теоретико-игровыми моделями подобных ситуаций являются некооперативные игры с ненулевой суммой. Такие игры называются биматричными , потому что задание каждой такой игры сводится к заданию двух матриц и одинаковой формы: .

Процесс биматричной игры состоит в независимом выборе игроком I числа а игроком II - числа , после чего игрок I получает выигрыш , а игрок II - выигрыш .

Номера строк матриц и назовем чистыми стратегиями игрока I, а номера столбцов этих матриц – чистыми стратегиями игрока II. Тогда пары вида будут являться ситуациями в чистых стратегиях биматричной игры , а числа и - выигрышами I и II игроков в ситуации . Соответственно, распределение вероятностей применения чистых стратегий игрока I - и игрока II - будем называть смешанными стратегиями . Тогда пары вида представляют ситуации биматричной игры в смешанных стратегиях , а числа и являются математическими ожиданиями выигрыша I и II игроков.

Ситуацией равновесия биматричной игры в смешанных стратегиях будем называть такую пару , при которой:

(8.2)
,

где - математическое ожидание выигрыша игрока I;

Математическое ожидание выигрыша игрока II;

Оптимальная смешанная стратегия игрока I;

Оптимальная смешанная стратегия игрока II.

Задача

Построение и решение биматричной игры . Предположим, что противолодочная подводная лодка страны осуществляет поиск ракетной подводной лодки государства , которая маневрирует в строго определенной части района боевого патрулирования. В остальной части этого района действует противолодочная подводная лодка , которая осуществляет поиск противолодочной подводной лодки . Пусть каждая противолодочная лодка для обнаружения противника может использовать свою гидроакустическую станцию или в активном режиме, включая ее периодически, или только в пассивном режиме, выполняя непрерывный поиск .

Как противолодочная подводная лодка , так и ракетная подводная лодка с обнаружением сигналов гидролокатора может уклониться от противника. Однако периодичность включения гидролокатора делает обнаружение возможным, но недостоверным.

В подобной конфликтной ситуации одним из игроков является противолодочная подводная лодка , а другим - противолодочная подводная лодка .Очевидно, ракетная подводная лодка не может быть игроком, так как она имеет только один способ действий, заключающийся в скрытом маневрировании и выполнении уклонения с обнаружением сигналов гидролокаторов.

Характерным здесь является то, что каждый из игроков преследует разные, но не противоположные цели. Действительно, целью противолодочной подводной лодки является обнаружение ракетной подводной лодки, а целью противолодочной подводной лодки - обнаружение противолодочной подводной лодки . Поэтому для оценки достижения цели каждым из игроков в зависимости от выбранных способов действий (стратегий) необходимо иметь два критерия эффективности и соответственно две функции выигрыша. Тогда моделью подобной конфликтной ситуации будет конечная игра с ненулевой суммой, описываемая двумя матрицами одинаковой формы и , называемая биматричной.

Примем за критерий эффективности противолодочной подводной лодки (игрок I) вероятность обнаружения ракетной подводной лодки , а за критерий эффективности противолодочной подводной лодки (игрок II) – вероятность обнаружения противолодочной подводной лодки . Тогда биматричная игра будет задана матрицей (рисунок 9.a) и матрицей (рисунок 9.b).


Рис. 9.a.


Рис. 9.b.

Где - использование активного режима;

Использование пассивного режима.