Чистые и смешанные стратегии в теории игр. Смешанные стратегии. Математические методы и модели в экономике

Дисперсионный анализ - это статистический метод оценки связи между факторными и результативным признаками в различных группах, отобранный случайным образом, основанный на определении различий (разнообразия) значений признаков. В основе дисперсионного анализа лежит анализ отклонений всех единиц исследуемой совокупности от среднего арифметического. В качестве меры отклонений берется дисперсия (В)- средний квадрат отклонений. Отклонения, вызываемые воздействием факторного признака (фактора) сравниваются с величиной отклонений, вызываемых случайными обстоятельствами. Если отклонения, вызываемые факторным признаком, более существенны, чем случайные отклонения, то считается, что фактор оказывает существенное влияние на результативный признак.

Для того, чтобы вычислить дисперсию значения отклонений каждой варианты (каждого зарегистрированного числового значения признака) от среднего арифметического возводят в квадрат. Тем самым избавляются от отрицательных знаков. Затем эти отклонения (разности) суммируют и делят на число наблюдений, т.е. усредняют отклонения. Таким образом, получают значения дисперсий.

Важным методическим значением для применения дисперсионного анализа является правильное формирование выборки. В зависимости от поставленной цели и задач выборочные группы могут формироваться случайным образом независимо друг от друга (контрольная и экспериментальная группы для изучения некоторого показателя, например, влияние высокого артериального давления на развитие инсульта). Такие выборки называются независимыми.

Нередко результаты воздействия факторов исследуются у одной и той же выборочной группы (например, у одних и тех же пациентов) до и после воздействия (лечение, профилактика, реабилитационные мероприятия), такие выборки называются зависимыми.

Дисперсионный анализ, в котором проверяется влияние одного фактора, называется однофакторным (одномерный анализ). При изучении влияния более чем одного фактора используют многофакторный дисперсионный анализ (многомерный анализ).

Факторные признаки - это те признаки, которые влияют на изучаемое явление.

Результативные признаки - это те признаки, которые изменяются под влиянием факторных признаков.

Условия применения дисперсионного анализа:

Задачей исследования является определение силы влияния одного (до 3) факторов на результат или определение силы совместного влияния различных факторов (пол и возраст, физическая активность и питание и т.д.).

Изучаемые факторы должны быть независимые (несвязанные) между собой. Например, нельзя изучать совместное влияние стажа работы и возраста, роста и веса детей и т.д. на заболеваемость населения.

Подбор групп для исследования проводится рандомизированно (случайный отбор). Организация дисперсионного комплекса с выполнением принципа случайности отбора вариантов называется рандомизацией (перев. с англ. - random), т.е. выбранные наугад.

Можно применять как количественные, так и качественные (атрибутивные) признаки.

При проведении однофакторного дисперсионного анализа рекомендуется (необходимое условие применения):

1. Нормальность распределения анализируемых групп или соответствие выборочных групп генеральным совокупностям с нормальным распределением.

2. Независимость (не связанность) распределения наблюдений в группах.

3. Наличие частоты (повторность) наблюдений.

Сначала формулируется нулевая гипотеза, то есть предполагается, что исследуемые факторы не оказывают никакого влияния на значения результативного признака и полученные различия случайны.

Затем определяем, какова вероятность получить наблюдаемые (или более сильные) различия при условии справедливости нулевой гипотезы.

Если эта вероятность мала, то мы отвергаем нулевую гипотезу и заключаем, что результаты исследования статистически значимы. Это еще не означает, что доказано действие именно изучаемых факторов (это вопрос, прежде всего, планирования исследования), но все же маловероятно, что результат обусловлен случайностью.

При выполнении всех условий применения дисперсионного анализа, разложение общей дисперсии математически выглядит следующим образом:

Doбщ. = Dфакт + D ост.,

Doбщ. - общая дисперсия наблюдаемых значений (вариант), характеризуется разбросом вариант от общего среднего. Измеряет вариацию признака во всей совокупности под влиянием всех факторов, обусловивших эту вариацию. Общее разнообразие складывается из межгруппового и внутригруппового;

Dфакт - факторная (межгрупповая) дисперсия, характеризуется различием средних в каждой группе и зависит от влияния исследуемого фактора, по которому дифференцируется каждая группа. Например, в группах различных по этиологическому фактору клинического течения пневмонии средний уровень проведенного койко-дня неодинаков - наблюдается межгрупповое разнообразие.

D ост. - остаточная (внутригрупповая) дисперсия, которая характеризует рассеяние вариант внутри групп. Отражает случайную вариацию, т.е. часть вариации, происходящую под влиянием неуточненных факторов и не зависящую от признака - фактора, положенного в основание группировки. Вариация изучаемого признака зависит от силы влияния каких-то неучтенных случайных факторов, как от организованных (заданных исследователем), так и от случайных (неизвестных) факторов.

Поэтому общая вариация (дисперсия) слагается из вариации, вызванной организованными (заданными) факторами, называемыми факториальной вариацией и неорганизованными факторами, т.е. остаточной вариацией (случайной, неизвестной).

Для выборки объема n выборочная дисперсия вычисляется как сумма квадратов отклонений от выборочного среднего, деленная на n-1 (объем выборки минус единица). Таким образом, при фиксированном объеме выборки n дисперсия есть функция суммы квадратов (отклонений), обозначаемая, для краткости, SS (от английского Sum of Squares - Сумма квадратов). Далее слово выборочная мы часто опускаем, прекрасно понимая, что рассматривается выборочная дисперсия или оценка дисперсии. В основе дисперсионного анализа лежит разделение дисперсии на части или компоненты. Рассмотрим следующий набор данных:

Средние двух групп существенно различны (2 и 6 соответственно). Сумма квадратов отклонений внутри каждой группы равна 2. Складывая их, получаем 4. Если теперь повторить эти вычисления без учета групповой принадлежности, то есть, если вычислить SS исходя из общего среднего этих двух выборок, то получим величину 28. Иными словами, дисперсия (сумма квадратов), основанная на внутригрупповой изменчивости, приводит к гораздо меньшим значениям, чем при вычислении на основе общей изменчивости (относительно общего среднего). Причина этого, очевидно, заключается в существенной разнице между средними значениями, и это различие между средними и объясняет существующее различие между суммами квадратов.

SS ст.св. MS F p
Эффект 24.0 24.0 24.0 .008
Ошибка 4.0 1.0

Как видно из таблицы, общая сумма квадратов SS = 28 разбита на компоненты: сумму квадратов, обусловленную внутригрупповой изменчивостью (2+2=4; см. вторую строку таблицы) и сумму квадратов, обусловленную различием средних значений между группами (28-(2+2)=24; см первую строку таблицы). Заметим, что MS в этой таблице есть средний квадрат, равный SS, деленная на число степеней свободы (ст.св).

В рассмотренном выше простом примере вы могли бы сразу вычислить t-критерий для независимых выборок. Полученные результаты, естественно, совпадут с результатами дисперсионного анализа.

Однако, ситуации, когда некоторое явление полностью описывается одной переменной, чрезвычайно редки. Например, если мы пытаемся научиться выращивать большие помидоры, следует рассматривать факторы, связанные с генетической структурой растений, типом почвы, освещенностью, температурой и т.д. Таким образом, при проведении типичного эксперимента приходится иметь дело с большим количеством факторов. Основная причина, по которой использование дисперсионного анализа предпочтительнее повторного сравнения двух выборок при разных уровнях факторов с помощью серий t-критерия, заключается в том, что дисперсионный анализ существенно более эффективен и, для малых выборок, более информативен.

Предположим, что в рассмотренном выше примере анализа двух выборок мы добавим еще один фактор, например, Пол. Пусть каждая группа теперь состоит из 3 мужчин и 3 женщин. План этого эксперимента можно представить в виде таблицы:

До проведения вычислений можно заметить, что в этом примере общая дисперсия имеет, по крайней мере, три источника:

1) случайная ошибка (внутригрупповая дисперсия),

2) изменчивость, связанная с принадлежностью к экспериментальной группе

3) изменчивость, обусловленная полом объектов наблюдения.

Отметим, что существует еще один возможный источник изменчивости - взаимодействие факторов, который мы обсудим позднее). Что произойдет, если мы не будем включать пол как фактор при проведении анализа и вычислим обычный t-критерий? Если мы будем вычислять суммы квадратов, игнорируя пол (т.е. объединяя объекты разного пола в одну группу при вычислении внутригрупповой дисперсии и получив при этом сумму квадратов для каждой группы равную SS =10 и общую сумму квадратов SS = 10+10 = 20), то получим большее значение внутригрупповая дисперсии, чем при более точном анализе с дополнительным разбиением на подгруппы по полу (при этом внутригрупповые средние будут равны 2, а общая внутригрупповая сумма квадратов равна SS = 2+2+2+2 = 8).

Итак, при введении дополнительного фактора: пол, остаточная дисперсия уменьшилась. Это связано с тем, что среднее значение для мужчин меньше, чем среднее значение для женщин, и это различие в средних значениях увеличивает суммарную внутригрупповую изменчивость, если фактор пола не учитывается. Управление дисперсией ошибки увеличивает чувствительность (мощность) критерия.

На этом примере видно еще одно преимущество дисперсионного анализа по сравнению с обычным t-критерием для двух выборок. Дисперсионный анализ позволяет изучать каждый фактор, управляя значениями других факторов. Это, в действительности, и является основной причиной его большей статистической мощности (для получения значимых результатов требуются меньшие объемы выборок). По этой причине дисперсионный анализ даже на небольших выборках дает статистически более значимые результаты, чем простой t-критерий.

Дисперсионный анализ используется для выявления влияния на изучаемый показатель некоторых факторов, обычно не поддающихся количественному измерению. Суть метода состоит в разложении общей вариации изучаемого показателя на части, соответствующие раздельному и совместному влиянию факторов, и статистическом изучении этих частей с целью выяснения приемлемости гипотез об отсутствии этих влияний. Модели дисперсионного анализа в зависимости от числа факторов классифицируются на однофакторные , двухфакторные и т.д. По цели исследования выделяют следующие модели: детерминированная (Ml) - здесь уровни всех факторов заранее фиксированы, и проверяют именно их влияние, случайная (М2) - здесь уровни каждого фактора получены как случайная выборка из генеральной совокупности уровней фактора, и смешанная (М3) - здесь уровни одних факторов заранее фиксированы, а уровни других - случайная выборка.

Однофакторный дисперсионный анализ

В основе однофакторного дисперсионного анализа лежит следующая вероятностная модель:

где - значение случайной величины У, принимаемое при уровне Д (,) , / =

1,2,..., v, фактора Л в &-м наблюдении, к = 1,2, ..., п,;

О 1 " 1 - эффект влияния на УГ уровня Д®;

е® - независимые случайные величины, отражающие влияние на У/"* неконтролируемых остаточных факторов, причем все е* 1 ~ N( 0, o R).

При этом в модели Ml все 0 (,) - детерминированные величины

и?е ("Ч = 0 ; а в модели М2 0 (,) - случайные величины (значения слу-

чайного эффекта 0), 0® = 0 где 0 - ;V(0, ст в), и все 0® и е* ’ - независимы.

Найдем общую вариацию S 2 результативного признака У и две ее составляющие - S 2 A и S R , отражающие соответственно влияние фактора А и влияние остаточных факторов:

Нетрудно убедиться в том, что S 2 = S 2 A + . Разделив все части

этого равенства на я, получим:

Это правило читается так: «Общая дисперсия наблюдений равна сумме межгрупповой дисперсии (это дисперсия Су (0 групповых средних) и внутригрупповой дисперсии (это средняя а 2 из групповых дисперсий)».

Для выяснения того, влияет ли фактор А на результативный признак:

  • ? в модели Ml проверяют гипотезу Н 0 : 0 (|) = 0 (2) = ... = 0 (v) =0 (если она будет принята, то для всех ink математическое ожидание МУ/"* = А/У [см. формулу (8.4.1)], а это означает, что при изменении уровня фактора групповая генеральная средняя не изменяется, т.е. рассматриваемые уровни фактора А не влияют на У;
  • ? в модели М2 проверяют гипотезу Н 0 = 0 (ее принятие означает что эффект 0 - постоянная величина, а с учетом условия М0 = 0 получим, что 0 = 0, т.е. фактор А не влияет на У).

Критерии проверки этих и других гипотез, а также оценки параметров модели (8.4.1) приведены в табл. 8.5.

Задача 8.7. Исследователь хочет выяснить, отличаются ли четыре способа рекламирования товара по влиянию на объем его продажи. Для этого в каждом из четырех однотипных городов (в них использовались различные способы рекламы) были собраны сведения об объемах продажи товара (в денежных единицах) в четырех случайно отобранных магазинах и вычислены соответствующие выборочные характеристики:

Решение. Здесь фактором А является способ рекламы; зафиксированы четыре его уровня, и выясняется, различаются ли по своему влиянию именно эти уровни, - это модель Ml однофакторного анализа.

где е** независимый?** N(0,g r).

Так как MY и все 0 (,) - постоянные величины, то при выполнении (8.4.3) наблюдения независимы и все

Допустим, что независимость наблюдений гарантируется организацией эксперимента; условие же (8.4.4) означает, что объем продаж при г"-м способе рекламы имеет нормальный закон распределения с математическим ожиданием а, = MY + 0 (,) и с дисперсией, одинаковой для всех способов. Допустим, что нормальное распределение имеет место. Используя критерий Бартлетта (см. табл. 8.3), убедимся, что результаты испытаний позволяют принять гипотезу Н"п : о? =... = ol. Вычислим


по табл. П. 6.3 при k=v-l=3np=a= 0,05 найдем % 2 а = Ха = 7,82 ; так как 1,538 Н" 0 принимаем.

Теперь проверим ключевую гипотезу дисперсионного анализа Н 0 : 0 м =... = 0 S 2 A = 220,19, S 2 R =39,27, S" 2 = 259,46; убедившись в справедливости равенства (8.4.2), найдем оценку (8.4.5) (см. табл. 8.5) s 2 = 39,27/12 = 3,27 дисперсии а 2 к ; проверим, выполняется ли неравенство (8.4.6) (см. табл. 8.5):

по табл. П. 6.4 при = 3, к 2 = 12 и р = а = 0,05 найдем F 2a = F a = 3,49 . Так как 22,43 > 3,49, неравенство (8.4.6) выполняется. Поэтому гипотезу

Условия и критерии проверки гипотез однофакторного дисперсионного анализа

Н 0: 0 (|) = ... = 0 (4) = 0 отклоняем: считаем, что зафиксированные способы рекламирования продукции влияют на объем продаж; при этом вли-

= 84,9% вариации объема продаж.

Изменим условие задачи. Предположим, что способы рекламирования товара заранее нс фиксированы, а выбраны случайным образом из всего набора способов. Тогда выяснение вопроса о том, влияет или нет способ рекламирования, сводится к проверке гипотезы Н 0: Og = 0 модели М2. Критерий ее проверки такой же, как и в модели Ml. Так как условие (8.4.6) отклонения гипотезы Н 0: о 2 в = 0 выполняется, гипотезу забраковываем, по крайней мере до получения дополнительных данных: считаем, что способ рекламирования товаров (во всем наборе этих способов) влияет на объем продаж.

Двухфакторный дисперсионный анализ

(с одинаковым числом т > 1 наблюдений при различных сочетаниях уровней факторов)

В основе двухфакторного дисперсионного анализа лежит следующая вероятностная модель:

где У/ 1 ’ 7) значение случайной величины У, принимаемое при уровне А (" i = 1,2, ..., v A , фактора А и уровне 5®, у =1,2, ..., v B , фактора В в к -м наблюдении, к = 1,2, ..., /и; 0^, 0 (й у) , 0^д у) - эффекты влияния на У/ 1 ’ соответственно уровней А (" 5® и взаимодействия А (0 и B ; - независимые случайные величины, отражающие влияние на У/ 1 ’ у) неконтролируемых остаточных факторов, причем е?’ л ~ /V((), а л).

Найдем общую вариацию S 2 признака У и ее четыре составляющие - S 2 a , S 2 B , S 2 ab , S 2 r , отражающие влияние соответственно факторов А, В, их взаимодействия и остаточных факторов:


Нетрудно убедится в том, что S 2 = + S 2 B + S 2 iB + S B .

Оценки параметров всех трех типов модели (8.4.9): Ml, М2 и М3, проверяемые гипотезы и критерии их проверки приведены в табл. 8.6. В моделях М2 и М3 предполагается, что все случайные эффекты независимы как между собой, так и с e^’ J) .

Чистая стратегия - детерминированный (исключающий случайности) план действий. В предыдущей главе мы рассматривали только чистые стратегии. Смешанные стратегии будут обсуждаться в параграфе 2.2, а пока, если не оговорено иного, под стратегией мы всегда имеем в виду чистую стратегию.

Очень часто в процессе изложения мы будем иллюстрировать концепции решения примерами биматричных игр, поэтому дадим соответствующие определения.

Определение 2.1. Конечной игрой называется игра, в которой множество игроков и множества стратегий каждого игрока содержат конечное число элементов. Конечная игра двух лиц называется биматричной игрой.

Последнее наименование происходит от удобной формы записи выигрышей в такой игре - с помощью двойной матрицы.

Для последующего анализа удобно разделить стратегии в произвольном профиле стратегий s на стратегию некоторого /-го игрока s, и стратегии всех остальных игроков s_ (. Формально s = (.у, s ,). Здесь не подразумевается, что мы меняем местами координаты профиля стратегий, мы лишь вводим другой способ его обозначения.

Первой концепцией решения игры, которую мы рассмотрим, будет равновесие в доминирующих стратегиях.

Определение 2.2. Стратегия /-го игрока у строго доминирует его стратегию s", если Uj(s jt s ,) > h,(s", s ,) для любого набора s , стратегий остальных игроков. При этом стратегия s" называется строго доминируемой.

Содержательно это означает, что при любом фиксированном наборе стратегий остальных игроков /-Й игрок, выбирая стратегию s, получает строго больший выигрыш, чем при выборе стратегии s". Логично предположить, что рациональный игрок не должен выбирать строго доминируемые стратегии. Такое предположение в простейших играх может оказаться достаточным для нахождения решения игры.

Определение 2.3. Профиль стратегий s* = (s*, s^,..., s*) называется равновесием в (строго) доминирующих стратегиях , если для любого /-го игрока стратегия s" строго доминирует любую другую его стратегию.

Может показаться, что данная концепция решения может привести лишь к тривиальным выводам. Каждый игрок имеет среди своих стратегий такую, которая даст ему выигрыш больше, чем любая другая, как бы ни действовали оппоненты. Тогда он будет применять именно эту стратегию в равновесии. Все довольно очевидно. Но именно такая ситуация характерна для, пожалуй, самой известной и весьма важной для анализа ряда практических ситуаций игры «дилемма заключенных».

Пример 2.1 (дилемма заключенных). Два преступника находятся под стражей в разных камерах и не могут переговариваться. Следствие располагает достаточной доказательной базой, чтобы осудить каждого из них за незначительное преступление на один год. Но по крупному преступлению, за которое преступникам грозит уже десять лет заключения, улик у следствия недостаточно. Представители следствия предлагают каждому из преступников сделку: преступник получит срок на

один год меньше, если он даст свидетельство против своего напарника, которого будет достаточно для обвинения последнего но крупному преступлению. Предположим, что преступников беспокоит только число лет, которое они проведут в тюрьме, каждый дополнительный год дает минус единицу полезности. Тогда выигрыши преступников могут быть представлены следующей двойной матрицей:

В случае, когда участники игры не названы по именам, мы будем считать, что разным стратегиям первого участника соответствуют строки двойной матрицы, а стратегиям второго участника - столбцы. Если в нашем примере первый заключенный даст показания, а второй не будет их давать, то первый будет отпущен на свободу, а второй получит десять лет тюрьмы.

Легко заметить, что, как бы ни действовал другой заключенный, выигрыш больше (срок заключения меньше), если давать показания (для первого игрока первые координаты в первой строке двойной матрицы строго больше, чем во второй строке, для второго игрока вторые координаты в первом столбце двойной матрицы строго больше, чем во втором столбце). Тогда равновесием в доминирующих стратегиях будет профиль стратегий (дать показания, дать показания).

Интересно в данном примере то, что игроки, выбирая поведение, которое увеличивает их выигрыш, приходят к ситуации, где их выигрыши низки по сравнению с противоположной ситуацией - когда оба выбирают молчать. Объяснение кроется в наличии сильного внешнего эффекта, т.е. сильного влияния действий одного игрока на выигрыши другого игрока. В результате равновесный профиль стратегий оказывается единственным неэффективным по Парето в данной игре. Отметим, что эффективность по Парето, желательная с точки зрения участников игры, может быть отнюдь не желательной с общественной точки зрения, как в данном случае.

Ситуации, подобные дилемме заключенных, часто встречаются при анализе экономических ситуаций. Рассмотрим, например, конкуренцию между двумя магазинами, торгующими близким набором продуктов. Для простоты предположим, что магазины могут назначать только два уровня цен - высокий или низкий. Потребители, естественно, предпочитают покупать в магазине с более низкими ценами. Тогда выигрыши магазинов, характеризующиеся их прибылью, могут выглядеть, например, следующим образом:


С точки зрения равновесия ситуация здесь аналогична дилемме заключенных - равновесие в доминирующих стратегиях (низкие цены, низкие цены) является единственным неэффективным по Парето профилем (и тоже желательным с общественной точки зрения).

Уже упомянутая широкая известность дилеммы заключенных стала причиной того, что на ее примере экспериментально пытались проверить корректность предсказаний теории игр. Проверка состояла в том, что двум незнакомым людям предлагалось сыграть в игру на деньги с призами (например, в долларах), близкими к тем, что указаны для игры двух магазинов. Каждый из участников принимал решение отдельно (часто - анонимно) и не знал до получения выигрыша решения другого игрока. Выяснилось, что в таких условиях во многих разыгрываниях игры игроки приходили не к равновесному результату, если предположить, что денежные призы корректно оценивают их выигрыши. Конечно, из результатов этих экспериментов не следует, что предсказания теории игр некорректны, а следует лишь то, что, оценивая свой выигрыш, игроки принимали во внимание неденежные факторы - соображения альтруизма, справедливости и т.п. Если выигрыши игроков оценены корректно, то игроки должны предпочитать доминирующую стратегию, а значит, и выбирать ее (в духе выявленных предпочтений в микроэкономике). Поэтому ценность экспериментов такого рода - не в проверке теоретико-игровых предсказаний, а в оценке роли нематериальной мотивации в действиях индивидов.

Значительно меньше, чем концепция строго доминирования, в теории игр используется концепция слабого доминирования.

Определение 2.4. Стратегия /-го игрока s, слабо доминирует его стратегию s", если m,(s, s ,) > m ; (sJ, s ,) для любого набора стратегий остальных игроков s_j, причем хотя бы для одного набора стратегий других игроков неравенство выполняется строго. Тогда стратегия s" называется слабо доминируемой.

В случае нестрогих неравенств уже нет возможности утверждать, что рациональный игрок не выберет слабо доминируемую стратегию, хотя такое поведение и представляется довольно логичным. Существует, хотя и редко применяется, аналогичное случаю строго доминирования определение равновесия в слабо доминирующих стратегиях.

Определение 2.5. Профиль стратегий s* = (s*, Sj,..., s*) называется равновесием в слабо доминирующих стратегиях , если для любого /-го игрока стратегия s" слабо доминирует любую другую его стратегию.

Пример 2.2 (закрытый аукцион второй цены). Среди двух лиц проводится закрытый аукцион второй цены. Аукцион устроен следующим образом. Каждый из участников указывает неотрицательную ставку, не зная ставок других участников (в конверте). Участник, сделавший наибольшую ставку, выплачивает максимальную сумму среди ставок других участников (т.е. сумму второй но величине ставки) и получает некоторый предмет. Если, например, ставки игроков составили 100 и 90, то побеждает в аукционе участник, сделавший ставку 100, он приобретает предмет за 90 - размер второй ставки. Пусть каждый участник имеет оценку предмета, выраженную в денежных единицах, v 2 > 0. Эти оценки известны всем участникам. Пусть при этом для простоты описания игры если оба участника указывают одинаковую ставку, то предмет достается первому участнику.

В данной игре стратегией первого игрока s, будет размер его ставки. Так как ставка неотрицательна, множество всех его возможных стратегий

5, = выполняется 0 = и,(о, s 2) > w,(s,s 2) = = ц, - s 2 v x слабо доминирует стратегию s,.

Мы показали, что для первого игрока стратегия назвать свою оценку в качестве ставки слабо доминирует любую другую стратегию. Легко проверить, что аналогичное утверждение верно и для второго игрока. Отметим, что в нашем рассуждении мы нигде не использовали тот факт, что игрок знает оценку другого игрока, а значит, и в случае игры с неполной информацией в закрытом аукционе второй цены называть свою оценку будет не менее выгодно, чем делать любую другую ставку.

Может показаться, что для продавца невыгодно устраивать аукцион второй цены, когда он может устроить аукцион первой цены и получать величину не второй, а первой ставки. Однако и величина ставок в случае аукциона первой цены в равновесии будет ниже. Подробнее о доходности аукционов мы поговорим в гл. 5. Пока же отметим, что аукцион второй цены очень поиулярен и широко используется, например, компаниями Google и «Яндекс» при продаже контекстной рекламы в Интернете .

Равновесие в доминирующих стратегиях существует лишь в небольшом классе игр. Обычно у игроков нет единственной стратегии, которая доминирует все прочие. Но концепция доминирования позволяет находить решения в более широком классе игр. Для этого нужно вести последовательные рассуждения о действиях игроков. Мы уже отмечали, что рациональный игрок не будет выбирать строго доминируемую стратегию. Но это означает, что другой игрок может вести анализ игры, игнорируя возможность выбора оппонентом такой стратегии. Возможно, при гаком анализе выяснится, что у другого игрока есть доминируемая стратегия, которая не была доминируемой в исходной игре. И так далее. Дадим формальное определение.

Процесс последовательного исключения строго доминируемых стратегий задается следующим образом. Исключим все строго доминируемые стратегии игроков из рассмотрения, т.е. рассмотрим новую игру, в которой из множества возможных стратегий игроков исключены все доминируемые стратегии. Затем в этой новой игре исключим все строго доминируемые стратегии и т.д.

Возможно, такой процесс завершится, когда у игроков останется по нескольку стратегий, но возможно, что каждый игрок будет иметь лишь одну неисключенную стратегию, тогда логично считать набор из этих стратегий решением игры.

Определение 2.6. Если в результате последовательного исключения строго доминируемых стратегий у каждого игрока остается единственная стратегия, то профиль этих стратегий называется равновесием по доминированию.

В примере 1.1 мы получили именно такое равновесие. Рассмотрим еще один пример.


Профиль стратегий (Н, П) составляет единственное равновесие по Нэшу в данной игре. Но заметим: чтобы выбрать П, второй игрок должен быть уверен, что первый игрок не выберет В. А ведь выигрыш первого игрока одинаков при выборе II вторым игроком. К тому же, выбрав В, первый игрок может не бояться, что второй игрок выберет Л. Возможно, рациональный второй игрок задумается о выборе стратегии Ц.

Второй вопрос, па который пока не найдено какого-то однозначного ответа: как игроки приходят к равновесию по Нэшу?

Идеальный теоретический сценарий здесь такой. Игроки независимо друг от друга формируют ожидания относительно действий других игроков, а затем выбирают действия, которые максимизируют их выигрыш при заданных ожиданиях. Если при этом ожидания соответствуют действиям, реально выбранным игроками, то получаем равновесие по Нэшу. Такая схема рассуждений позволяет назвать равновесие по Нэшу ситуацией с самореализующимися ожиданиями. Но откуда берутся сами ожидания? И какое именно из равновесий по Нэшу, если их несколько, будет выбрано в результате описанного процесса? В рамках рассмотренного сценария эти вопросы остаются без ответа.

Другой подход предполагает наличие обучения игроков. Игроки либо теоретически изучают, как следует играть в данной игре (представьте себе студентов экономического факультета), либо имеют опыт схожего взаимодействия (например, опытный работник приходит в новый коллектив), что позволяет им правильно сформировать ожидания и выбрать оптимальное поведение. Этот сценарий позволяет объяснить формирование ожиданий, но он, во-первых, сокращает область применения игровых моделей только до стандартных, изучаемых и часто встречающихся ситуаций взаимодействия, а во-вторых, может приводить к тому, что не разграничиваются ситуации однократного и повторяющегося взаимодействия, а последние существенно отличаются с точки зрения стратегий и методов решения в рамках теории игр, о чем подробнее будет сказано в гл. 4.

Третий сценарий состоит в том, что существуют предварительная договоренность между игроками, или обычаи, или законы, или указания третьих лиц, которые регламентируют взаимодействие игроков. При этом договоренности или указания могут быть необязательны к исполнению, но если рекомендуется сыграть равновесие по Нэшу, то ни у кого из игроков не возникает желания (в одиночку) отклониться от предписанного поведения. Понятно, что такой сценарий возможен не в любой ситуации. Кроме того, сам процесс формирования договоренности или привлечения третьих лиц может стать частью игры.

Наконец, третий естественный вопрос, который возникает при изучении концепции равновесия по Нэшу, следующий: есть ли эмпирические свидетельства того, что реальные игроки обычно выбирают равновесные стратегии? Здесь снова чрезвычайно сложно дать краткий и однозначный ответ. При этом характер возникающих проблем больше соответствует тематике экспериментальной экономики. Поэтому ограничимся рекомендацией обратиться к специализированной литературе, например, книге , где отлично разобраны вопросы методологии экспериментов и представлен ряд результатов.

Существуют игры, которые не имеют равновесия в чистых стратегиях (см. пример 3.1), поэтому возникает вопрос: какие условия являются достаточными для существования такого равновесия? Сформулируем и докажем утверждение о существовании равновесия по Нэшу в чистых стратегиях в играх, не являющихся конечными.

Утверждение 2.3 . Если множества стратегий каждого из игроков S t являются непустыми выпуклыми компактами в евклидовом пространстве, а функция выигрыша каждого игрока и- непрерывна по s и квазивогнута по 5, то в игре существует равновесие по Нэшу в чистых стратегиях.

Доказательство. Напомним формулировку теоремы Какутаии , которую мы будем использвать при доказательстве. Пусть X - непустое выпуклое компактное множество в R n , X* - множество его подмножеств и/ - такое полунепрерывное сверху отображение из X в X*, что для каждой точки х е X множество f(x) непусто, замкнуто и выпукло. Тогда отображение / имеет неподвижную точку.

Идея доказательства нашего утверждения состоит в построении отображения, удовлетворяющего условиям теоремы Какутани. Для этого несколько переопределим отображение наилучшего ответа. Будем, чисто технически, считать, что наилучший ответ зависит не только от стратегий других игроков, но и от собственной стратегии игрока s y (s). С изменением собственной стратегии игрока при фиксированных стратегиях остальных игроков наилучший ответ, конечно же, меняться не будет. Теперь введем обозначение для отображения наилучшего ответа для всех игроков как декартова произведения s(s ) = s,(s) х s 2 (s) х... х s n (s). Это отображение каждому профилю ставит в соответствие множество профилей, в которых каждый игрок наилучшим образом отвечает на стратегии остальных игроков. Неподвижная точка отображения S, т.е. профиль s такой, что s е s(s)> по определению является равновесием по Нэшу. Покажем, что отображение 5 удовлетворяет условиям теоремы Какутани. Проверка каждого условия будет составлять отдельный пункт доказательства.

  • 1. Покажем, что множество S всех профилей - выпуклый компакт. Так как но условию утверждения множества стратегий каждого из игроков S, являются непустыми выпуклыми компактами, то и декартово произведение S = S t X S 2 X ... х S n является выпуклым компактом.
  • 2. Отображение s имеет непустые образы. По теореме Вейерштрасса непрерывная функция и- достигает на замкнутом ограниченном множестве 5, своего максимального значения. Следовательно, s имеет непустые образы.
  • 3. Образы отображения s замкнуты и выпуклы. Так как функция выигрыша каждого игрока u t квазивогнута по s if то по свойству квазивогнутой функции множество $. = {s. | u t (s i9 s .) > k } при фиксированных s .и k замкнуто при замкнутой области определения и выпукло, если не пусто. Так как это верно для любого k , то верно и то, что множество 5. = {5/1 u t (s", 5 ,) > maxw.(s., s .)}

выпукло. Но тогда и декартово произведение 5(5) = s x (s) х s 2 (S) х... X s n СS) замкнуто и выпукло.

4. Покажем, что отображение § полунепрерывно сверху. Используем условие непрерывности функции и, по s. Доказывать будем от противного. Предположим, что отображение § нс является полунепрерывным сверху. Тогда найдутся последовательности профилей стратегий s m и s m , где т - номер элемента последовательности, такие что для любого т s"" е S, s m е s(s""), lim s"" = s° е S, но lim s"" = s° g lim s(s""). Это означает, что найдется иг-

т~* оо т-> /и -? оо

рок, для которого стратегия s f ° не является наилучшим ответом на s 0 , т.е. найдется стратегия s" такая, что и,(s", s 0 ,) > u,(s] s° ;). Тогда можно найти такое е > 0, чтобы выполнялось m,(s/, s 0 ,) > m,(s ; °, s 0 ,) + Зе, откуда

Поскольку по условию функция м, непрерывна, lim s m = s°, lim s"” = s°,

m * oo m -* oo

при достаточно большом m верно

Объединяя неравенства (2.8)-(2.10) в одну цепочку, получим

Из соотношений (2.11) следует, что u,(s", s"") > m,(s/", s"") + s, но это противоречит условию s"" е s(s""), так как s" дает строго больший выигрыш, чем s/", в ответ на s"". Пришли к противоречию. Следовательно, наша исходная предпосылка, что отображение s не является полунепрерывным сверху, была неверной.

Мы показали, что отображение S удовлетворяет всем условиям теоремы Какутани, а значит, имеет неподвижную точку. Данная неподвижная точка является равновесием по Нэшу. Утверждение 2.3 доказано. ?

Утверждение 2.3, в частности, гарантирует существование равновесия по Нэшу в примере 2.7, но не в примере 2.8, где функции выигрыша игроков разрывны.

" Пример из работы .

теория игра стратегия смешанная

Смешанные стратегии

Если в матричной игре отсутствует седловая точка в чистых стратегиях, то находят верхнюю и нижнюю цены игры. Они показывают, что игрок 1 не получит выигрыша, превосходящего верхнюю цену игры, и что игроку 1 гарантирован выигрыш, не меньший нижней цены игры.

Смешанная стратегия игрока - это полный набор его чистых стратегий при многократном повторении игры в одних и тех же условиях с заданными вероятностями. Подведем итоги сказанного и перечислим условия применения смешанных стратегий:

  • * игра без седловой точки;
  • * игроки используют случайную смесь чистых стратегий с заданными вероятностями;
  • * игра многократно повторяется в сходных условиях;
  • * при каждом из ходов ни один игрок не информирован о выборе стратегии другим игроком;
  • * допускается осреднение результатов игр.

Применяются следующие обозначения смешанных стратегий.

Для игрока 1 смешанная стратегия, заключающаяся в применении чистых стратегий А 1 , А 2 , ..., А т с соответствующими вероятностями р 1 , р 2, ..., р т.

Для игрока 2

q j -- вероятность применения чистой стратегии B j .

В случае когда р i = 1, для игрока 1 имеем чистую стратегию

Чистые стратегии игрока являются единственно возможными несовместными событиями. В матричной игре, зная матрицу А (она относится и к игроку 1, и к игроку 2), можно определить при заданных векторах и средний выигрыш (математическое ожидание эффекта) игрока 1:

где и - векторы;

p i и q i - компоненты векторов.

Путем применения своих смешанных стратегий игрок 1 стремится максимально увеличить свой средний выигрыш, а игрок 2 - довести этот эффект до минимально возможного значения. Игрок 1 стремится достигнуть

Игрок 2 добивается того, чтобы выполнялось условие

Обозначим и векторы, соответствующие оптимальным смешанным стратегиям игроков 1 и 2, т.е. такие векторы и, при которых будет выполнено равенство

Цена игры - средний выигрыш игрока 1 при использовании обоими игроками смешанных стратегий. Следовательно, решением матричной игры является:

  • - оптимальная смешанная стратегия игрока 1;
  • - оптимальная смешанная стратегия игрока 2;

Цена игры.

Смешанные стратегии будут оптимальными (и), если образуют седловую точку для функции т.е.

Существует основная теорема математических игр.

Для матричной игры с любой матрицей А величины

существуют и равны между собой: = = .

Следует отметить, что при выборе оптимальных стратегий игроку 1 всегда будет гарантирован средний выигрыш, не меньший чем цена игры, при любой фиксированной стратегии игрока 2 (и, наоборот, для игрока 2). Активными стратегиями игроков 1 и 2 называют стратегии, входящие в состав оптимальных смешанных стратегий соответствующих игроков с вероятностями, отличными от нуля. Значит, в состав оптимальных смешанных стратегий игроков могут входить не все априори заданные их стратегии.

Решить игру - означает найти цену игры и оптимальные стратегии. Рассмотрение методов нахождения оптимальных смешанных стратегий для матричных игр начнем с простейшей игры, описываемой матрицей 22. Игры с седловой точкой специально рассматриваться не будут. Если получена седловая точка, то это означает, что имеются невыгодные стратегии, от которых следует отказываться. При отсутствии седловой точки можно получить две оптимальные смешанные стратегии. Как уже отмечалось, эти смешанные стратегии записываются так:

Значит, имеется платежная матрица

a 11 p 1 + a 21 p 2 = ; (1.16)

a 12 p 1 + a 22 p 2 = ; (1.17)

p 1 + p 2 = 1. (1.18)

a 11 p 1 + a 21 (1 - p 1) = a 12 p 1 + a 22 (1 - p 1); (1.19)

a 11 p 1 + a 21 - a 21 p 1 = a 12 p 1 + a 22 - a 22 p 1 , (1.20)

откуда получаем оптимальные значенияи:

Зная и, находим:

Вычислив, находим и:

a 11 q 1 + a 12 q 2 = ; q 1 + q 2 = 1; (1.24)

a 11 q 1 + a 12 (1 - q 1) = . (1.25)

при a 11 a 12 . (1.26)

Задача решена, так как найдены векторы и цена игры. Имея матрицу платежей А, можно решить задачу графически. При этом методе алгоритм решения весьма прост (рис. 2.1).

  • 1. По оси абсцисс откладывается отрезок единичной длины.
  • 2. По оси ординат откладываются выигрыши при стратегии А 1 .
  • 3. На линии, параллельной оси ординат, в точке 1 откладываются выигрыши при стратегии a 2 .
  • 4. Концы отрезков обозначаются для a 11 -b 11 , a 12 -b 21 , a 22 -b 22 , a 21 -b 12 и проводятся две прямые линии b 11 b 12 и b 21 b 22 .
  • 5. Определяется ордината точки пересечения с. Она равна. Абсцисса точки с равна р 2 (р 1 = 1 - р 2).

Рис. 1.1.

Данный метод имеет достаточно широкую область приложения. Это основано на общем свойстве игр тп, состоящем в том, что в любой игре тп каждый игрок имеет оптимальную смешанную стратегию, в которой число чистых стратегий не больше, чем min(m, n). Из этого свойства можно получить известное следствие: в любой игре 2п и т2 каждая оптимальная стратегия и содержит не более двух активных стратегий. Значит, любая игра 2п и т2 может быть сведена к игре 22. Следовательно, игры 2п и т2 можно решить графически. Если матрица конечной игры имеет размерность тп, где т > 2 и п > 2, то для определения оптимальных смешанных стратегий используется линейное программирование.