Определение архитектуры (основные понятия). Словарь архитектурных терминов от А до Я. ГОУ СПО «Орский индустриальный колледж» Черников Е.В

греч. - зодчество, строительство) - искусство проектировать и строить объекты, оформляющие пространственную среду для жизни. Архитектура является частью материальной культуры общества (жилые дома, общественные, административные и другие типы зданий).

В то же время архитектура является одним из видов искусства, позволяющего возводить красивые, удобные, соответствующие определенным целям постройки. Как вид искусства архитектура входит в сферу духовной культуры. Эстетически формирует окружение человека, выражает общественные идеи в художественных образах.

Отличное определение

Неполное определение ↓

АРХИТЕКТУРА

Или зодчество - здания, другие сооружения или их комплексы, образующие материальную, художественную организованную среду жизнедеятельности человека. Как часть материальных средств существования людей и как часть средств производства (промышленная архитектура), она принадлежит к сфере материальной культуры, но как важный вид пластических искусств - к сфере духовной художественной культуры. Эстетически формируя жизненную среду общества, архитектура выражает специфическими художественными формами господствующие представления своей эпохи, идеи и устремления своего общества. В архитектуре взаимосвязаны функционально-технические и духовно-эстетические начала: она базируется на триединстве пользы, прочности и красоты. В этом качестве она служит основой объединения скульптуры, живописи и других пространственных и временных видов художественного творчества. Недаром архитектуру называют «матерью всех искусств». В силу своей открытости массам, а также стабильности и прочности своих творений архитектура более других искусств способна передать социально организующий аспект современного ей идеала, дух упорядоченности и разумной закономерности. Архитектура основана на символическом понимании пространства, ввиду чего обращается к символическому смыслу здания, устанавливая соответствие между различными планами бытия и формами здания. Пропорции многих построек прошлого определялись символическим значением форм. Например, в древних греческих и римских храмах в целях подчеркивания идеи духовного восхождения устанавливалась прямая соотнесенность между архитектурными пропорциями и космическими моделями. Наиболее последовательно идея постепенного восхождения выражена в композиции вавилонских зиккуратов. Архитектурное пространство мечети создается балансом качества, сил и энергий, соответственностью с движением светил на небе, чередованием света и тьмы. Несомненно, что в основе сложной геометрической символики храма лежит принцип дерева или горы, в котором присутствует космическая и технологическая символика. Храм выступает как земная проекция моделей космоса: несколько небес, покоящихся на опорах (пилонах, колоннах), связывают землю с «первичными водами». При этом все круглые формы выражают идею неба, квадрат олицетворяет землю, а треугольник символизирует взаимодействие между небом и землей. Храм - это модель организованного космоса, проявление одного во множественности, поэтому в нем широко используется символика чисел: 7 в пирамидах, 3 в христианских храмах, а 8, являющееся связующим звеном между 4 (квадратом) и 2 (кругом), - в башнях. В основе храма также лежит символика мандалы - квадратуры круга - квадрат и круг, связанные восьмиугольником, который несет на себе тяжесть храма. На развитие древнерусской архитектуры оказало влияние византийское искусство, самобытно интерпретированное древнерусскими архитекторами. В XII–XIII вв. сложились местные школы архитектуры в Новгороде, Пскове, Владимире и других городах. С XIV в. ведущее место заняла московская школа, и постепенно сформировался единый стиль древнерусской архитектуры, которую отличали ясное выявление конструкции зданий, величавые пропорции, строгая уравновешенность пространства и массы. Широкое распространение получили крестово-купольные храмы, а в XVI в. появился своеобразный тип шатровых храмов-башен. При этом архитектурные элементы храма имеют собственное символическое толкование. Например, три двери храма олицетворяют веру, надежду и милосердие. Церковные стены ограждают спасенное от греха человечество, контрфорсы опоры означают духовный подъем и моральную силу, крыша символизирует милосердие, колонны - догматы веры, своды - пути спасения, а шпиль - Божий перст, указующий конечную цель человечества. Источ.: Аполлон. Изобразительное и декоративное искусство. Архитектура: Терминологический словарь. М., 1997; Энциклопедия символов, знаков, эмблем. М., 1997; Чернявская Т. Н. Художественная культура СССР: Лингвострановедческий словарь. М., 1984.

Термин "архитектура системы" часто употребляется как в узком, так и в широком смысле этого слова. В узком смысле под архитектурой понимается архитектура набора команд. Архитектура набора команд служит границей между аппаратурой и программным обеспечением и представляет ту часть системы, которая видна программисту или разработчику компиляторов. Следует отметить, что это наиболее частое употребление этого термина. В широком смысле архитектура охватывает понятие организации системы, включающее такие высокоуровневые аспекты разработки компьютера как систему памяти, структуру системной шины, организацию ввода/вывода и т.п.

Применительно к вычислительным системам термин "архитектура" может быть определен как распределение функций, реализуемых системой, между ее уровнями, точнее как определение границ между этими уровнями. Таким образом, архитектура вычислительной системы предполагает многоуровневую организацию. Архитектура первого уровня определяет, какие функции по обработке данных выполняются системой в целом, а какие возлагаются на внешний мир (пользователей, операторов, администраторов баз данных и т.д.). Система взаимодействует с внешним миром через набор интерфейсов: языки (язык оператора, языки программирования, языки описания и манипулирования базой данных, язык управления заданиями) и системные программы (программы-утилиты, программы редактирования, сортировки, сохранения и восстановления информации).

Интерфейсы следующих уровней могут разграничивать определенные уровни внутри программного обеспечения. Например, уровень управления логическими ресурсами может включать реализацию таких функций, как управление базой данных, файлами, виртуальной памятью, сетевой телеобработкой. К уровню управления физическими ресурсами относятся функции управления внешней и оперативной памятью, управления процессами, выполняющимися в системе.

Следующий уровень отражает основную линию разграничения системы, а именно границу между системным программным обеспечением и аппаратурой. Эту идею можно развить и дальше и говорить о распределении функций между отдельными частями физической системы. Например, некоторый интерфейс определяет, какие функции реализуют центральные процессоры, а какие - процессоры ввода/вывода. Архитектура следующего уровня определяет разграничение функций между процессорами ввода/вывода и контроллерами внешних устройств. В свою очередь можно разграничить функции, реализуемые контроллерами и самими устройствами ввода/вывода (терминалами, модемами, накопителями на магнитных дисках и лентах). Архитектура таких уровней часто называется архитектурой физического ввода/вывода.

Архитектура системы команд. Классификация процессоров (CISC и RISC)

Как уже было отмечено, архитектура набора команд служит границей между аппаратурой и программным обеспечением и представляет ту часть системы, которая видна программисту или разработчику компиляторов.

Двумя основными архитектурами набора команд, используемыми компьютерной промышленностью на современном этапе развития вычислительной техники являются архитектуры CISC и RISC. Основоположником CISC-архитектуры можно считать компанию IBM с ее базовой архитектурой /360, ядро которой используется с1964 года и дошло до наших дней, например, в таких современных мейнфреймах как IBM ES/9000.

Лидером в разработке микропроцессоров c полным набором команд (CISC - Complete Instruction Set Computer) считается компания Intel со своей серией x86 и Pentium. Эта архитектура является практическим стандартом для рынка микрокомпьютеров. Для CISC-процессоров характерно: сравнительно небольшое число регистров общего назначения; большое количество машинных команд, некоторые из которых нагружены семантически аналогично операторам высокоуровневых языков программирования и выполняются за много тактов; большое количество методов адресации; большое количество форматов команд различной разрядности; преобладание двухадресного формата команд; наличие команд обработки типа регистр-память.

Основой архитектуры современных рабочих станций и серверов является архитектура компьютера с сокращенным набором команд (RISC - Reduced Instruction Set Computer). Зачатки этой архитектуры уходят своими корнями к компьютерам CDC6600, разработчики которых (Торнтон, Крэй и др.) осознали важность упрощения набора команд для построения быстрых вычислительных машин. Эту традицию упрощения архитектуры С. Крэй с успехом применил при создании широко известной серии суперкомпьютеров компании Cray Research. Однако окончательно понятие RISC в современном его понимании сформировалось на базе трех исследовательских проектов компьютеров: процессора 801 компании IBM, процессора RISC университета Беркли и процессора MIPS Стенфордского университета.

Разработка экспериментального проекта компании IBM началась еще в конце 70-х годов, но его результаты никогда не публиковались и компьютер на его основе в промышленных масштабах не изготавливался. В 1980 году Д.Паттерсон со своими коллегами из Беркли начали свой проект и изготовили две машины, которые получили названия RISC-I и RISC-II. Главными идеями этих машин было отделение медленной памяти от высокоскоростных регистров и использование регистровых окон. В 1981году Дж.Хеннесси со своими коллегами опубликовал описание стенфордской машины MIPS, основным аспектом разработки которой была эффективная реализация конвейерной обработки посредством тщательного планирования компилятором его загрузки.

Эти три машины имели много общего. Все они придерживались архитектуры, отделяющей команды обработки от команд работы с памятью, и делали упор на эффективную конвейерную обработку. Система команд разрабатывалась таким образом, чтобы выполнение любой команды занимало небольшое количество машинных тактов (предпочтительно один машинный такт). Сама логика выполнения команд с целью повышения производительности ориентировалась на аппаратную, а не на микропрограммную реализацию. Чтобы упростить логику декодирования команд использовались команды фиксированной длины и фиксированного формата.

Среди других особенностей RISC-архитектур следует отметить наличие достаточно большого регистрового файла (в типовых RISC-процессорах реализуются 32 или большее число регистров по сравнению с 8 - 16 регистрами в CISC-архитектурах), что позволяет большему объему данных храниться в регистрах на процессорном кристалле большее время и упрощает работу компилятора по распределению регистров под переменные. Для обработки, как правило, используются трехадресные команды, что помимо упрощения дешифрации дает возможность сохранять большее число переменных в регистрах без их последующей перезагрузки.

Ко времени завершения университетских проектов (1983-1984 гг.) обозначился также прорыв в технологии изготовления сверхбольших интегральных схем. Простота архитектуры и ее эффективность, подтвержденная этими проектами, вызвали большой интерес в компьютерной индустрии и с 1986 года началась активная промышленная реализация архитектуры RISC. К настоящему времени эта архитектура прочно занимает лидирующие позиции на мировом компьютерном рынке рабочих станций и серверов.

Развитие архитектуры RISC в значительной степени определялось прогрессом в области создания оптимизирующих компиляторов. Именно современная техника компиляции позволяет эффективно использовать преимущества большего регистрового файла, конвейерной организации и большей скорости выполнения команд. Современные компиляторы используют также преимущества другой оптимизационной техники для повышения производительности, обычно применяемой в процессорах RISC: реализацию задержанных переходов и суперскалярной обработки, позволяющей в один и тот же момент времени выдавать на выполнение несколько команд.

Следует отметить, что в последних разработках компании Intel (имеется в виду Pentium P54C и процессор следующего поколения P6), а также ее последователей-конкурентов (AMD R5, Cyrix M1, NexGen Nx586 и др.) широко используются идеи, реализованные в RISC-микропроцессорах, так что многие различия между CISC и RISC стираются. Однако сложность архитектуры и системы команд x86 остается и является главным фактором, ограничивающим производительность процессоров на ее основе.

Методы адресации и типы данных

Методы адресации

В машинах к регистрами общего назначения метод (или режим) адресации объектов, с которыми манипулирует команда, может задавать константу, регистр или ячейку памяти. Для обращения к ячейке памяти процессор прежде всего должен вычислить действительный или эффективный адрес памяти, который определяется заданным в команде методом адресации.

На рис. 4.1 представлены все основные методы адресации операндов, которые реализованы в компьютерах, рассмотренных в настоящем обзоре. Адресация непосредственных данных и литеральных констант обычно рассматривается как один из методов адресации памяти (хотя значения данных, к которым в этом случае производятся обращения, являются частью самой команды и обрабатываются в общем потоке команд). Адресация регистров, как правило, рассматривается отдельно. В данном разделе методы адресации, связанные со счетчиком команд (адресация относительно счетчика команд) рассматриваются отдельно. Этот вид адресации используется главным образом для определения программных адресов в командах передачи управления.

На рисунке на примере команды сложения (Add) приведены наиболее употребительные названия методов адресации, хотя при описании архитектуры в документации разные производители используют разные названия для этих методов. На этом рисунке знак "(" используется для обозначения оператора присваивания, а буква М обозначает память (Memory). Таким образом, M обозначает содержимое ячейки памяти, адрес которой определяется содержимым регистра R1.

Использование сложных методов адресации позволяет существенно сократить количество команд в программе, но при этом значительно увеличивается сложность аппаратуры. Возникает вопрос, а как часто эти методы адресации используются в реальных программах? На рис. 4.2 представлены результаты измерений частоты использования различных методов адресации на примере трех популярных программ (компилятора с языка Си GCC, текстового редактора TeX и САПР Spice), выполненных на компьютере VAX.

Метод адресации Пример
команды
Смысл команды
метода
Использование
Регистровая Add R4,R3 R4(R4+R5 Требуемое значение в регистре
Непосредственная или литеральная Add R4,#3 R4(R4+3 Для задания констант
Базовая со смещением Add R4,100(R1) R4(R4+M Для обращения к
локальным переменным
Косвенная регистровая Add R4,(R1) R4(R4+M Для обращения по указателю или вычисленному адресу
Индексная Add R3,(R1+R2) R3(R3+M Иногда полезна при работе с массивами: R1 - база, R3 - индекс
Прямая или
абсолютная
Add R1,(1000) R1(R1+M Иногда полезна для обращения к статическим данным
Косвенная Add R1,@(R3) R1(R1+M] Если R3-адрес указателя p, то выбирается значение по этому указателю
Автоинкрементная Add R1,(R2)+ R1(R1+M
R2(R2+d
Полезна для прохода в цикле по массиву с шагом: R2 - начало массива
В каждом цикле R2 получает приращение d
Автодекрементная Add R1,(R2)- R2(R2-d
R1(R1+M
Аналогична предыдущей
Обе могут использоваться для реализации стека
Базовая индексная со смещением и масштабированием Add R1,100(R2) R1(
R1+M+R2+R3*d
Для индексации массивов

Рис. 4.1. Методы адресации

Рис. 4.2. Частота использования различных методов адресации на программах TeX, Spice, GCC

Из этого рисунка видно, что непосредственная адресация и базовая со смещением доминируют.

При этом основной вопрос, который возникает для метода базовой адресации со смещением, связан с длиной (разрядностью) смещения. Выбор длины смещения в конечном счете определяет длину команды. Результаты измерений показали, что в подавляющем большинстве случаев длина смещения не превышает16 разрядов.

Этот же вопрос важен и для непосредственной адресации. Непосредственная адресация используется при выполнении арифметических операций, операций сравнения, а также для загрузки констант в регистры. Результаты анализа статистики показывают, что в подавляющем числе случаев 16 разрядов оказывается вполне достаточно (хотя для вычисления адресов намного реже используются и более длинные константы).

Важным вопросом построения любой системы команд является оптимальное кодирование команд. Оно определяется количеством регистров и применяемых методов адресации, а также сложностью аппаратуры, необходимой для декодирования. Именно поэтому в современных RISC-архитектурах используются достаточно простые методы адресации, позволяющие резко упростить декодирование команд. Более сложные и редко встречающиеся в реальных программах методы адресации реализуются с помощью дополнительных команд, что вообще говоря приводит к увеличению размера программного кода. Однако такое увеличение длины программы с лихвой окупается возможностью простого увеличения тактовой частоты RISC-процессоров. Этот процесс мы можем наблюдать сегодня, когда максимальные тактовые частоты практически всех RISC-процессоров (Alpha, R4400, Hyper SPARC и Power2) превышают тактовую частоту, достигнутую процессором Pentium.

Типы команд

Команды традиционного машинного уровня можно разделить на несколько типов, которые показаны на рис. 4.3.

Тип операции Примеры
Арифметические и логические Целочисленные арифметические и логические операции: сложение, вычитание, логическое сложение, логическое умножение и т.д.
Пересылки данных Операции загрузки/записи
Управление потоком команд Безусловные и условные переходы, вызовы процедур и возвраты
Системные операции Системные вызовы, команды управления виртуальной памятью и т.д.
Операции с плавающей точкой Операции сложения, вычитания, умножения и деления над вещественными числами
Десятичные операции Десятичное сложение, умножение, преобразование форматов и т.д.
Операции над строками Пересылки, сравнения и поиск строк

Рис. 4.3. Основные типы команд

Команды управления потоком команд

В английском языке для указания команд безусловного перехода, как правило, используется термин jump , а для команд условного перехода - термин branch , хотя разные поставщики необязательно придерживаются этой терминологии. Например компания Intel использует термин jump и для условных, и для безусловных переходов. Можно выделить четыре основных типа команд для управления потоком команд: условные переходы, безусловные переходы, вызовы процедур и возвраты из процедур.

Частота использования этих команд по статистике примерно следующая. В программах доминируют команды условного перехода. Среди указанных команд управления на разных программах частота их использования колеблется от 66 до 78%. Следующие по частоте использования - команды безусловного перехода (от 12 до 18%). Частота переходов на выполнение процедур и возврата из них составляет от 10 до 16%.

При этом примерно 90% команд безусловного перехода выполняются относительно счетчика команд. Для команд перехода адрес перехода должен быть всегда заранее известным. Это не относится к адресам возврата, которые не известны во время компиляции программы и должны определяться во время ее работы. Наиболее простой способ определения адреса перехода заключается в указании его положения относительно текущего значения счетчика команд (с помощью смещения в команде), и такие переходы называются переходами относительно счетчика команд. Преимуществом такого метода адресации является то, что адреса переходов, как правило, расположены недалеко от текущего адреса выполняемой команды и указание относительно текущего значения счетчика команд требует небольшого количества бит в смещении. Кроме того, использование адресации относительно счетчика команд позволяет программе выполняться в любом месте памяти, независимо от того, куда она была загружена. То есть этот метод адресации позволяет автоматически создавать перемещаемые программы.

Реализация возвратов и переходов по косвенному адресу, в которых адрес не известен во время компиляции программы, требует методов адресации, отличных от адресации относительно счетчика команд. В этом случае адрес перехода должен определяться динамически во время работы программы. Наиболее простой способ заключается в указании регистра для хранения адреса возврата, либо для перехода может разрешаться любой метод адресации для вычисления адреса перехода.

Одним из ключевых вопросов реализации команд перехода состоит в том, насколько далеко целевой адрес перехода находится от самой команды перехода? И на этот вопрос статистика использования команд дает ответ: в подавляющем большинстве случаев переход идет в пределах 3 - 7 команд относительно команды перехода, причем в 75% случаев выполняются переходы в направлении увеличения адреса, т.е. вперед по программе.

Поскольку большинство команд управления потоком команд составляют команды условного перехода, важным вопросом реализации архитектуры является определение условий перехода. Для этого используются три различных подхода. При первом из них в архитектуре процессора предусматривается специальный регистр, разряды которого соответствуют определенным кодам условий. Команды условного перехода проверяют эти условия в процессе своего выполнения. Преимуществом такого подхода является то, что иногда установка кода условия и переход по нему могут быть выполнены без дополнительных потерь времени, что, впрочем, бывает достаточно редко. А недостатками такого подхода является то, что, во-первых, появляются новые состояния машины, за которыми необходимо следить (упрятывать при прерывании и восстанавливать при возврате из него). Во-вторых, и что очень важно для современных высокоскоростных конвейерных архитектур, коды условий ограничивают порядок выполнения команд в потоке, поскольку их основное назначение заключается в передаче кода условия команде условного перехода.

Второй метод заключается в простом использовании произвольного регистра (возможно одного выделенного) общего назначения. В этом случае выполняется проверка состояния этого регистра, в который предварительно помещается результат операции сравнения. Недостатком этого подхода является необходимость выделения в программе для анализа кодов условий специального регистра.

Третий метод предполагает объединение команды сравнения и перехода в одной команде. Недостатком такого подхода является то, что эта объединенная команда довольно сложна для реализации (в одной команде надо указать и тип условия, и константу для сравнения и адрес перехода). Поэтому в таких машинах часто используется компромиссный вариант, когда для некоторых кодов условий используются такие команды, например, для сравнения с нулем, а для более сложных условий используется регистр условий. Часто для анализа результатов команд сравнения для целочисленных операций и для операций с плавающей точкой используется разная техника, хотя это можно объяснить и тем, что в программах количество переходов по условиям выполнения операций с плавающей точкой значительно меньше общего количества переходов, определяемых результатами работы целочисленной арифметики.

Одним из наиболее заметных свойств большинства программ является преобладание в них сравнений на условие равно/неравно и сравнений с нулем. Поэтому в ряде архитектур такие команды выделяются в отдельный поднабор, особенно при использовании команд типа "сравнить и перейти".

Говорят, что переход выполняется, если истинным является условие, которое проверяет команда условного перехода. В этом случае выполняется переход на адрес, заданный командой перехода. Поэтому все команды безусловного перехода всегда выполняемые. По статистике оказывается, что переходы назад по программе в большинстве случаев используются для организации циклов, причем примерно 60% из них составляют выполняемые переходы. В общем случае поведение команд условного перехода зависит от конкретной прикладной программы, однако иногда сказывается и зависимость от компилятора. Такие зависимости от компилятора возникают вследствие изменений потока управления, выполняемого оптимизирующими компиляторами для ускорения выполнения циклов.

Вызовы процедур и возвраты предполагают передачу управления и возможно сохранение некоторого состояния. Как минимум, необходимо уметь где-то сохранять адрес возврата. Некоторые архитектуры предлагают аппаратные механизмы для сохранения состояния регистров, в других случаях предполагается вставка в программу команд самим компилятором. Имеются два основных вида соглашений относительно сохранения состояния регистров. Сохранение вызывающей (caller saving) программой означает, что вызывающая процедура должна сохранять свои регистры, которые она хочет использовать после возврата в нее. Сохранение вызванной процедурой предполагает, что вызванная процедура должна сохранить регистры, которые она собирается использовать. Имеются случаи, когда должно использоваться сохранение вызывающей процедурой для обеспечения доступа к глобальным переменным, которые должны быть доступны для обеих процедур.

Типы и размеры операндов

Имеется два альтернативных метода определения типа операнда. В первом из них тип операнда может задаваться кодом операции в команде. Это наиболее употребительный способ задания типа операнда. Второй метод предполагает указание типа операнда с помощью тега, который хранится вместе с данными и интерпретируется аппаратурой во время выполнения операций над данными. Этот метод использовался, например, в машинах фирмы Burroughs, но в настоящее время он практически не применяется и все современные процессоры пользуются первым методом.

Обычно тип операнда (например, целый, вещественный с одинарной точностью или символ) определяет и его размер. Однако часто процессоры работают с целыми числами длиною 8, 16, 32 или 64 бит. Как правило целые числа представляются в дополнительном коде. Для задания символов (1 байт = 8 бит) в машинах компании IBM используется код EBCDIC, но в машинах других производителей почти повсеместно применяется кодировка ASCII. Еще до сравнительно недавнего времени каждый производитель процессоров пользовался своим собственным представлением вещественных чисел (чисел с плавающей точкой). Однако за последние несколько лет ситуация изменилась. Большинство поставщиков процессоров в настоящее время для представления вещественных чисел с одинарной и двойной точностью придерживаются стандарта IEEE 754.

В некоторых процессорах используются двоично кодированные десятичные числа, которые представляются в в упакованном и неупакованном форматах. Упакованный формат предполагает, что для кодирования цифр 0-9 используются 4 разряда и что две десятичные цифры упаковываются в каждый байт. В неупакованном формате байт содержит одну десятичную цифру, которая обычно изображается в символьном коде ASCII.

В большинстве процессоров, кроме того, реализуются операции над цепочками (строками) бит, байт, слов и двойных слов.

Словарь архитектурных терминов от А до Я, понятие «Архитектура».

Архитектура (от латинского architectura – главный строитель) – искусство проектирования и строительства зданий, сооружений и целых комплексов. Архитектура призвана создавать удобную и организованную с материальной точки зрения среду, которая нужна людям для жизни и осуществления основной деятельности. Архитектурные объекты обустраиваются с учетом современных технических возможностей, а также с эстетического мировоззрения конкретной эпохи.

Этимология

Термин «архитектура» имеет латинское происхождения, но при этом характеризуется греческими корнями. Если смотреть с греческой точки зрения, то слово можно перевести как «высшее плотничество» или «строительное искусство». Замечу, что еще во времена Древнего Рима под словом «архитектура» подразумевали обширную область специализаций, в том числе военную, гидротехническую, корабельную и т.д. Что же касается дня сегодняшнего, то архитектура в настоящее время является лишь искусством возводить функциональные здания для людей, животных, предметов. В русском языке слово «архитектура» издревле заменялось словом «зодчество», которое имеет старославянские корни (зьдь – материя, глина).

Важность архитектурных объектов

Под термином «архитектура» нередко подразумевают облик зданий либо собирательное понятие о здании или сооружении в целом. Архитектурные работы могут восприниматься не только с функциональной точки зрения, но и в качестве политических и культурных символов, а также произведений искусства. Подавляющее большинство исторических цивилизаций имеют собственные архитектурные достижения. Именно архитектура позволяет обществу исполнять свои жизненные функции и с ее помощью направлять основные жизненные процессы в нужное русло. Поэтому архитектурные объекты всегда сопоставляются с потребностями и возможностями людей.

Градостроительство

Предметом архитектуры называют работу с выделенным пространством, целью которой является организация заданного населенного места. В результате, логическим продолжением архитектурной специализации стало отдельное направление, получившее название «градостроительство». Это направление охватывает весь комплекс строительных, технических, общественных, экономических, художественных и архитектурных проблем, занимаясь их всесторонним решением. Именно поэтому градостроительство тесно связано с архитектурой, и наоборот. Невозможно правильно оценить то или иное архитектурное сооружение, не оценивая его с градостроительной точки зрения. Все современные градостроители имеют высшее архитектурное образование.

Области архитектуры

1. Архитектурное проектирование – главный архитектурный раздел, связанный с разработкой проектов и последующим строительством зданий. В проектную деятельность входит творческий созидательный процесс, координация проектной документации для реконструкции или строительства, а также авторский надзор за осуществляемым строительством.

2. Градостроительство – раздел, который делится на объемное проектирование (проекты зданий) и непосредственное градостроительство (проектирование районов или многофункциональных комплексов). Во втором случае принимается во внимание перспективное развитие городской среды, включая ее экологические и санитарно-экономические проблемы.

3. Урбанистика – схожий с градостроительством раздел, который учитывает момент формирования города на основе современных принципов городского развития. Тесно связан с общей теорией систем и социологией.

4. Ландшафтная архитектура – это раздел, включающий в себя организацию парков, садов и прочих сред. Главным материалом строительства в этом случае будет естественная растительность и сам ландшафт.

5. Дизайн интерьера – раздел архитектуры, который входит в компетенцию как архитекторов, так и дизайнеров. Целью дизайнерской деятельности является создание эргономичного, функционального и эстетичного пространства в помещении, используя для этого архитектурно-художественные средства.

6. Малые архитектурные формы – раздел, к которому можно отнести все функционально-декоративные и мемориальные объекты городского благоустройства, равно как и объекты, выступающие носителями информации.

7. Бумажная архитектура – теоретический архитектурный раздел, заключающийся в проектировании определенных форм, но без учета их последующей материализации.

Словарь архитектурных терминов от А до Я:

Добавить комментарий (можно с фото)

Currently you have JavaScript disabled. In order to post comments, please make sure JavaScript and Cookies are enabled, and reload the page. on how to enable JavaScript in your browser.

Вы можете добавить свое фото (jpg)


  • Описание архитектурных терминов от Д до И.


  • Список и описание архитектурных терминов на букву К.


  • Архитектурные термины, начинающиеся с буквы П.


  • Определения для архитектурных терминов от Ф до Я.


  • Все архитектурные термины на букву А.

2. Эпохи и стили архитектуры

3. Архитектура как памятник культуры и истории

Заключение

Список литературы

Введение

Как известно, сформулированный в свое время Г. Гегелем закон неравномерности развития, видов искусства проявляется в том, что иерархия видов искусства весьма подвижна и часто слабо связана с изменениями в социально-политических и экономических аспектах общественной жизни. В результате в культурном поле появляется доминирующий вид искусства, который в той или иной мере «настраивает» художественную деятельность в целом, накладывая на нее отпечаток своей специфики.

Выдвижение определенного вида искусства на вершину иерархии, видимо, связано с его способностью наиболее полно и адекватно представить господствующую в обществе картину мира. Так, например, средневековой картине мира с ослабленной временной координатой полнее всего отвечают пространственные виды искусства - храмы, украшенные скульптурой. Доминирующее положение в картине мира современного человека фактора времени приводит к выдвижению на первый план временных и пространственно-временных видов искусства.

Но в каждый момент времени художественная культура представляет собой динамичную и самосогласованную систему с взаимодействующими между собой элементами. В результате появления новых элементов - например, видов искусства, основанных на достижениях научно технического прогресса - меняется структура системы культуры и функции отдельных ее элементов, но в том или ином виде все элементы культуры, включая и самые архаичные, все же сохраняются, хотя, может быть, и в измененном виде.

Цель данной работы – рассмотреть один из пространственных видов искусства – архитектуру.

Выявить понятие и сущность архитектуры;

Рассмотреть развитие архитектуры в различные исторические периоды;

Изучить вопросы архитектуры как культурного памятника.

1. Понятие и сущность архитектуры

Архитектура - художественно-образная организация пространства на основе строительных конструкций. Следует отличать утилитарное строительство и соответствующее этой технической деятельности понятие конструкции от архитектуры как художественного творчества в камне, дереве и глине. Архитектор оперирует понятием композиция и использует выразительные (композиционные) средства: метр и ритм, симметрию и асимметрию, отношения величин и пропорции. Этим средствам соответствуют приемы акцентирования, уравновешивания, пропорционирования.

Архитектуру относят к бифункциональным (двойственным) искусствам, в композиции которых соединяются утилитарная и художественная функции. Их сочетание и взаимодействие определяются жанром архитектурного творчества (сакральная, или храмовая, архитектура, дворцовые, жилые здания, технические сооружения).

Архитектуру также относят к пространственным видам искусства, точнее было бы сказать - к пространственно-временным, поскольку архитектор организует массы, объемы, линии, силуэты не только в трехмерном пространстве, но и во времени восприятия композиции зрителем. Только в движении, то есть во времени и направленности разворачивания композиции в пространстве, при меняющихся в определенной последовательности точках зрения, прохождении зрителем вдоль, вокруг и внутрь здания, раскрывается замысел, идея и художественный образ архитектурной композиции. В этом смысле, как отмечал теоретик архитектуры А. И. Некрасов, не камень или дерево, а пространство и время являются композиционным материалом, главным же художественным средством - организация движения .

Соответственно этому все архитектурные композиции можно разделить на два типа: «пребывания в пространстве» и «продвижения в пространстве». К первому типу относят центрические и зальные композиции, ко второму - аллеи, галереи, анфилады, аркады. Отнесение архитектуры к «неизобразительным искусствам» весьма спорно. В сравнении с живописью, скульптурой, графикой архитектор действительно (за исключением декоративных деталей) не изображает конкретные предметы. Зато архитектура способна не только выражать, но и изображать абстрактные, возвышенные идеи и образы: вознесения, возвышения духа, полета души, силы, мощи, спокойствия, уверенности. Такие образы передать непосредственно, минуя эзопов язык аллегорий, не может ни живописец, ни скульптор. Поэтому Б. Р. Виппер называл архитектуру «в высшей степени изобразительным искусством» . Художественный смысл искусства архитектуры заключается, таким образом, в преображении утилитарной строительной конструкции в композицию. К примеру, опорный столб, выдерживающий тяжесть перекрытия, представляет собой оптимальную, прочную и надежную строительную конструкцию, а колонна, выражающая идею духовного сопротивления тяжести и вознесения к небу, есть архитектурный образ, композиция.

Внешне эти формы выглядят почти одинаково, но содержание их различно. Это различие определяется в теории архитектуры понятием ордера. Здесь и проходят границы архитектуры как художественного творчества. Отсюда также традиционные сравнения архитектуры с космосом, возникающим из хаоса, «очеловеченной материей», каменной книгой человечества, застывшей музыкой.

2. Эпохи и стили архитектуры

Итальянское Возрождение – переломная эпоха в развитии искусства конца XV - начала XVI в. В архитектуре ознаменовалась обращением к античному наследию и переосмыслением архитектурных композиций Древнего Рима, в первую очередь ордерной системы. Архитектура Итальянского Возрождения включает два основных периода: флорентийский (вторая половина XV в., или кватроченто, - «четырехсотые годы») и римский (начало XVI в., или чинквеченто, - «пятисотые годы»). Французское название эпохи - Ренессанс. Флорентийский период, или тосканское Возрождение, отмечен влияниями средневековых традиций и новаторской деятельностью Ф.Брунеллески, впервые в итальянской архитектуре соединившего римскую арку с арабским приемом опоры арок непосредственно на капители колонн. Крупнейшим теоретиком архитектуры был Л. Б. Альберти. Римский период начался с деятельности Д. Браманте - автора первого проекта храма Св. Петра в Риме.

В архитектуре Итальянского Возрождения разработаны новые типы зданий: палаццо (городской дворец), центрический храм, загородная вилла, а также композиционные приемы. По-особенному складывалось развитие архитектуры в других городах Италии, например в Венеции. Благодаря творчеству Д. Браманте, Рафаэля, А. Палладио в XVI в. в Италии были созданы основы архитектуры Классицизма, но уже с середины XVI в., прежде всего в творчестве Микеланджело, формируется стиль Барокко, другие зодчие склоняются к Маньеризму . Итальянское Возрождение включает в себя различные традиции, тенденции развития, художественные направления и стили. Следовательно, словосочетание «Итальянское Возрождение» не является названием стиля, а только обозначает определенную историческую эпоху.

Классицизм – художественное направление, ориентированное на рациональное композиционное мышление, нормы ясности, целостности, простоты, уравновешенности, тектоничности, статичности и замкнутости формы. В большинстве случаев в качестве образца выбирается искусство античной классики. В истории архитектуры нормы Классицизма сложились в эпоху Высокого Возрождения в Италии (начало XVI в.), программно в качестве художественного направления были оформлены в искусстве Франции второй половины XVII в. Поэтому западноевропейская архитектура классицизма второй половины XVIII в. («вторая волна» Классицизма) называется Неоклассицизмом. В Италии, Франции, Германии, России художественное направление Классицизма порождало в различные исторические периоды разные историко-региональные художественные стили классицистической архитектуры .

Неоклассицизм – историко-региональный стиль классицизма, получивший распространение в Италии и Франции во второй половине XVIII в. (в этих странах классицистический стиль возникал не впервые, отсюда название). В русской архитектуре этот же период принято именовать Классицизмом (неоклассическое течение в России сформировалось в начале XX в).

Готика - художественный стиль западноевропейской архитектуры XIII-XV вв. Связан в первую очередь с изменениями композиции средневековых кафедральных соборов. Название возникло позднее, в эпоху Итальянского Возрождения (готами древние римляне называли германские племена «к северу от Альп»). Новшества готического стиля связаны с деятельностью аббата Сюжера в церкви Сен-Дени к северу от Парижа (1136-1140), строительством собора в Дареме, Англия (ок. 1133), собора Нотр-Дам (Парижской Богоматери). Стремительный рост населения европейских городов в XII- XIII вв. требовал возведения больших кафедральных соборов (чтобы под их сводами смогло собраться на воскресную мессу все население города). Однако простое увеличение размеров приводило к обрушению тяжелых каменных сводов из-за усиления бокового распора, действующего на стены. Требовалась новая конструкция.

Постепенно, опытным путем, облегчая своды введением каркаса из нервюр (франц. - ребро), системы наружных опор из контрфорсов (франц. – «противосила») и аркбутанов (франц. - арка + связка, крайняя опора), удалось значительно ослабить боковой распор. Тяжесть сводов передавалась с помощью аркбутанов (в форме полуарки) на контрфорсы - ряды опорных столбов, вынесенных за пределы объема здания. Это позволило значительно увеличить пространство храма, а внутренние опоры превратить в тонкие пучки колонн. Стены освобождались от нагрузки, появилась возможность прорезать их большими окнами - так возникли готические витражи. Пространство стало легким и светлым. 150-метровая длина собора, высота сводов 40-50 м, высота башен 80 м становились нормой. Каменные своды неимоверной тяжестью давили вниз, но человек, находящийся внутри, видел только уносящиеся вверх тонкие пучки колонн, теряющиеся в вышине нервюры, яркие потоки света, льющиеся сквозь цветные стекла витражей. Так возникал художественный образ вознесения души к небу - образ, противоположный прозаическому действию строительной конструкции, уравновешивающей силы, направленной сверху вниз. Поэтому готический стиль - яркий пример метафизики искусства архитектуры, художественного преображения строительной конструкции.

Архитектура – это деятельность по созданию художественно осмысленной пространственной среды для жизненных процессов общества в конкретных естественно-природных условиях, органически сочетающая в себе рационализм научно-технического метода со свободой и творческим вдохновением художественного метода.

Понятие архитектуры включает в себя деятельность и ее результат, архитектурное проектирование и само здание. При этом для архитектора архитектура – прежде всего деятельность, обозначение процесса создания архитектурного объекта.

Архитектурное пространство – это реальное трехмерное пространство нашей планеты, вмещающее человека. Последнее позволяет считать его четырехмерным. Архитектурное пространство является предметом архитектуры и ее центральной категорией.

Итак, предмет архитектуры – конкретно-историческое пространство. Архитектурное пространство, как мы понимаем, – это совокупность внутреннего, ограждающего и внешнего пространств.

Внутреннее пространство – функционально-типологическое существо архитектуры, душа архитектурного объекта. Внутреннее пространство насыщено жизненной энергией объекта, обеспечивает условия для его нормального функционирования.

Ограждающее пространство – материально-конструктивное. Это физическое тело архитектурного объекта. Ограждающее пространство сформировано «плотным» пространством конструкций, строительных материалов, а также инженерного оборудования. «Материальная оболочка» ограждающего пространства обеспечивает в зданиях нормальную жизнедеятельность людей.

Внешнее пространство – природное, градостроительное – является предпосылкой и условием существования архитектурного объекта как единства внутреннего и ограждающего пространств. Оно формирует дух архитектурного объекта. Внешнее пространство – это информационное и энергетическое поле, существующее в исторической бесконечности, «питающее» акт рождения архитектурного объекта.

Видимая форма, как говорят философы, «кажимость», внешность, может возникнуть только как граница между двумя из перечисленных пространств: внешним и ограждающим (внешняя форма), ограждающим и внутренним (внутренняя форма). В любом здании внешняя видимая форма – это его фасад, внутренняя внешняя форма – интерьер помещений.

Свойства архитектурного пространства, которые учитывают в архитектурном проектировании:

– геометричность – размер и форма пространства необходимы для осуществления деятельности человека, размещения оборудования и перемещения людей;

– состояние воздушной среды (микроклимат) – объем воздуха для дыхания с оптимальными параметрами температуры, влажности и скорости его движения, соответствующими нормальному для осуществления данной деятельности тепло- и влагообмену человеческого организма, степень чистоты воздуха;



– звуковой режим – условия слышимости в помещении и защита от мешающих звуков;

– световой режим – условия работы органов зрения, определяемые степенью освещенности помещения, цветовые характеристики;

видимость и зрительное восприятие – условия для работы людей, связанные с необходимостью видеть различные объекты в помещении.

Качество архитектурного пространства зависит от сочетания этих свойств.

Функция – это понятие, теоретическая абстракция, обозначающее практическое назначение архитектурного объекта.В переводе с латинского языка означает «исполнение, осуществление». Функция сооружения – пространственное воплощение деятельности и деятельность, воплощенная в пространстве архитектурного объекта. Функция – не пространство и не деятельность. Функция – это единство пространства и деятельности.

В архитектурном проектировании функция выражается в нескольких формах:

– функция как цель создания архитектурного объекта;

– функция как процесс, движение, изменение;

– функция как выраженная целесообразность.

Функция выражается в функциональных схемах, материализуется в планах здания, так как все жизненные процессы в архитектуре проходят на горизонтальной плоскости.

Каждый архитектурный объект и все его элементы выполняют свою определенную функцию. Следовательно, можно различать главные, основные, подсобные и дополнительные функции. Значение функции зависит от места элемента в системе проектирования объекта.

Архитектурными объектами считаются здания, постройки и сооружения.

Структура, или строение архитектурного объекта, образует его внутреннюю форму. В отличие от внешней формы, внутренняя форма невидима, а точнее, ее весьма трудно увидеть. Восприятие внутренней формы проходит всеми органами чувств во времени. Понять и оценить структуру архитектурного объекта можно, если пройти по всему зданию, обойти его снаружи либо проанализировать чертежи. Структура архитектурного объекта отражает профессиональный уровень восприятия и оценки зданий, описывается с помощью чертежей – планов, разрезов, фасадов (рис. 1).

Рис. 1 Структура архитектурного объекта

Закономерности формирования структуры здания изучаются основами композиции, закрепляются навыки композиционного моделирования в учебном архитектурном проектировании.

Внутренняя форма, или структура представляет собой органическое соединение в единое целое – архитектурный объект – внутреннего, ограждающего и внешнего пространства.

Внутреннее пространство архитектурного объекта является его душой, формируется функцией, оценивается пользой.

Ограждающее пространствоархитектурного объекта – его физическое тело, формируется конструкцией, оценивается прочностью.

Внешнее пространствоархитектурного объекта обусловливает его дух, формируется контекстом, оценивается красотой.

В связи с этим структура архитектурного объекта в процессе проектирования формируется тремя группами факторов: социально-функциональными, инженерно-конструктивными и архитектурно-художественными.

В группу социально-функциональных факторов входят социально-демографические и национально-этнографические характеристики потребителя, жизнедеятельность и поведение потребителя, технология услуг или производства.

Группу инженерно-конструктивных факторов образуют конструктивные системы и методы возведения здания, строительные материалы и инженерное оборудование.

Группу архитектурно-художественных факторов составляют природно-климатические, градостроительные, социально-культурные и социально-экономические условия. К социально-культурным условиям относятся опыт; ценности; традиции; оценки, накопленные обществом, народами в ходе их исторического развития.

Каждая группа факторов выполняет доминирующую роль в определенном виде пространства. Так, социально-функциональные факторы являются наиболее важными для внутреннего пространства, инженерно-конструктивные факторы определяют проектирование ограждающего пространства, а архитектурно-художественные факторы более важны для внешнего пространства.

Архитектор, обладая определенным методам формообразования, т. е. способом обработки имеющихся условий и превращения их в проект здания, осуществляет процесс архитектурного проектирования. Итогом этого процесса является создание идеальной модели здания – проекта, а затем и его строительство.

Вопросы:

1. Дать определение понятию «архитектура».

2. Что включает в себя понятие архитектуры?

3. В чем заключаются две задачи архитектуры?

4. Каковы свойства архитектурного пространства?

5. В каких формах выражается функция архитектурного проектирования?